如圖,四邊形ABCD是邊長為1的正方形,四邊形EFGH是邊長為2的正方形,點(diǎn)D與點(diǎn)F重合,點(diǎn)B,D(F),H在同一條直線上,將正方形ABCD沿F?H方向平移至點(diǎn)B與點(diǎn)H重合時(shí)停止,設(shè)點(diǎn)D、F之間的距離為x,正方形ABCD與正方形EFGH重疊部分的面積為y,則能大致反映y與x之間函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
【答案】分析:正方形ABCD與正方形EFGH重疊部分主要分為3個(gè)部分,是個(gè)分段函數(shù),分別對(duì)應(yīng)三種情況中的對(duì)應(yīng)函數(shù)求出來即可得到正確答案.
解答:解:DF=x,正方形ABCD與正方形EFGH重疊部分的面積為y
①y=DF2=x2(0≤x<);
②y=1(≤x<2);
③∵BH=3-x
∴y=BH2=x2-3x+9(2≤x<3).
綜上可知,圖象是
故選B.
圖:①







點(diǎn)評(píng):解決有關(guān)動(dòng)點(diǎn)問題的函數(shù)圖象類習(xí)題時(shí),關(guān)鍵是要根據(jù)條件找到所給的兩個(gè)變量之間的函數(shù)關(guān)系,尤其是在幾何問題中,更要注意基本性質(zhì)的掌握和靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案