如圖,在四邊形ABCD中,∠A=104°,∠ABC=76°,BD⊥CD于點D,EF⊥CD于點F,你能說明∠1=∠2嗎?試一試.

解:能,理由如下.
∵∠A=104°,∠ABC=76°,
∴∠A+∠ABC=180°,
∴AD∥BC(同旁內角互補,兩直線平行)
∴∠1=∠3(兩直線平行,內錯角相等)
∵BD⊥CD,EF⊥CD
∴∠BDC=∠EFC=90°
∴BD∥EF
∴∠2=∠3(兩直線平行,同位角相等)
∴∠1=∠2(等量代換)
分析:根據(jù)已知得出∠A+∠ABC=180°,則AD∥BC,進而得出∠1=∠3,以及∠2=∠3即可得出答案.
點評:此題主要考查了平行線的判定與性質,關鍵是掌握平行線的判定與性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結AD、AE、CD,則下列結論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案