精英家教網 > 初中數學 > 題目詳情
給定方程組
1
x
+
1
y
=1
1
y
+
1
z
=2
1
z
+
1
x
=5
,如果令
1
x
=A,
1
y
=B,
1
z
=C,則方程組
A+B=1
B+C=2
A+C=5
由此解得
x=2
y=-1
z=3
,對不對,為什么?
分析:此題用換元法,將分式方程組轉化為整式方程組來解答,應解得
A=2
B=-1
C=3
;然后將A、B、C的值倒過來,解出x、y、z解出來.
解答:解:不對,沒有把解倒過來,應該為x=
1
2
,y=-1,z=
1
3

正確的解答過程為:
1
x
+
1
y
=1
1
y
+
1
z
=2
1
z
+
1
x
=5
,
1
x
=A,
1
y
=B,
1
z
=C,
則原方程化為:
A+B=1
B+C=2
A+C=5
,
解得:
A=2
B=-1
C=3

∴x=
1
2
,y=-1,z=
1
3
點評:解數學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

給定方程組
1
x
+
1
y
=1
1
y
+
1
z
=2
1
z
+
1
x
=5
,如果令
1
x
=A,
1
y
=B,
1
z
=C,則方程組
A+B=1
B+C=2
A+C=5
由此解得
x=2
y=-1
z=3
,對不對,為什么?

查看答案和解析>>

同步練習冊答案