如圖,正方形網(wǎng)格中,每個小正方形的邊長為1,則網(wǎng)格上的△ABC是
直角
直角
三角形.
分析:先根據(jù)勾股定理求出AB2、BC2、AC2的長,再根據(jù)勾股定理的逆定理判斷出△ABC的形狀即可.
解答:解:∵由勾股定理可知,AC2=12+82=65,
BC2=62+42=52,
AB2=22+32=13,
∴AC2=BC2+AB2
∴△ABC是直角三角形.
故答案為:直角.
點評:本題考查的是勾股定理的逆定理,即如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在如圖的正方形網(wǎng)格中有一個格點三角形ABC.請在圖中畫一個與△ABC相似且相似比不等于1的格點三角形,并寫出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,正方形網(wǎng)格中,A、B、C均在格點上,在所給直角坐標系中解答下列問題:
(1)分別寫出A、B、C三點關于y軸對稱點的坐標;
(2)在圖中畫出以A、B、C、D為頂點的四邊形,使其為軸對稱圖形(畫一個即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形網(wǎng)格中,每一個小正方形的邊長都是1,四邊形ABCD的四個頂點都在格點上,O為AD邊的中點,若把四邊形ABCD繞著點O順時針旋轉180°.試解決下列問題:
(1)畫出四邊形ABCD旋轉后的圖形;
(2)設點C旋轉后的對應點為C′,則tan∠AC′B=
2
3
2
3
;
(3)求點C旋轉過程中所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在如圖的正方形網(wǎng)格中,每個小正方形的邊長都是單位1,△ABC的頂點均在格點上.
(1)畫出△ABC向左平移2個單位,然后再向上平移4個單位后的△A1B1C1
(2)畫出△A2B2C2,使△A2B2C2和△A1B1C1關于點O成中心對稱;
(3)指出如何平移△ABC,使得△A2B2C2和△ABC能拼成一個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形網(wǎng)格中的交點,我們稱之為格點,點A用有序數(shù)對(2,2)表示,其中第一個數(shù)表示排數(shù),第2個數(shù)表示列數(shù),在圖中有一個格點C,使S△ABC=1,寫出符合條件的點C的有序數(shù)對.

查看答案和解析>>

同步練習冊答案