如果|a|=2,b=-1,那么|a+b|的值為

[  ]

A.1

B.3

C.1或3

D.-1或-3

答案:C
解析:

  ∵|a|=2,

  ∴a=±2.

  ∴a+b=-2-1=-3或a+b=2-1=1.

  ∴|a+b|=1或3.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點一測叢書 八年級數(shù)學(xué) 下。ńK版課標本) 江蘇版 題型:044

函數(shù)的奇偶性

  一般地,如果函數(shù)y=f(x)對于自變量取值范圍內(nèi)的任意x,都有f(-x)=-f(x)f那么y=f(x)就叫做奇函數(shù);如果函數(shù)y=f(x)對于自變量取值范圍內(nèi)的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函數(shù).

  例如:f(x)=x3+x.

  當x取任意實數(shù),

  f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)

  即f(-x)=-f(x)

  所以f(x)=x3+x為奇函數(shù).

  又如:f(x)=|x|,

  當x取任意實數(shù)時,f(-x)=|-x|=|x|=f(x),

  即f(-x)=f(x)

  所以f(x)為偶函數(shù).

問題:(1)下列函數(shù):

①y=x4;②y=x2+1;③y=;④y=;⑤y=x+

所有奇函數(shù)是________,所有偶函數(shù)是________(只填序號);

(2)請你再分別寫出一個奇函數(shù),一個偶函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:三點一測叢書九年級數(shù)學(xué)上 題型:044

矩形倉庫的多種設(shè)計方案

  實踐與探索課上,老師布置了這樣一道題:

  有100米長的籬笆材料,想圍成一矩形露天倉庫,要求面積不小于600平方米,在場地的北面有一堵長50米的舊墻.有人用這個籬笆圍一個長40米,寬10米的矩形倉庫,但面積只有400平方米,不合要求.現(xiàn)在請你設(shè)計矩形倉庫的長和寬,使它符合要求.

  經(jīng)過同學(xué)們一天的實踐與思考,老師收到了如下幾種設(shè)計方案:

  (1)如果設(shè)矩形的寬為x米,則用于長的籬笆為=(50-x)米,這時面積S=x(50-x)

  當S=600時,由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.

  檢驗后知x=20符合要求.

  (2)根據(jù)在周長相等的條件下,正方形面積大于矩形面積,所以設(shè)計成正方形倉庫,它的邊長為x米,則4x=100,x=25.這時面積達到625米,當然符合要求.

  (3)如果利用場地北面的那堵舊墻,取矩形的長與舊墻平行,設(shè)與墻垂直的矩形一邊長為x米,則另一邊為100-2x,如圖.

  因為舊墻長50米,所以100-2x≤50.即x≥25米.若S=600平方米,則由x(100-2x)=600,即x2-50x+300=0,解得x1=25+5,x2=25-5.根據(jù)x≥25,舍去x2=25-5

  所以,利用舊墻,取矩形垂直于舊墻一邊長為25+5米(約43米),另一邊長約14米,符合要求.

  (4)如果充分利用北面舊墻,即矩形一邊是50米舊墻時,用100米籬笆圍成矩形倉庫,則矩形另一邊長為25米,這時矩形面積為S=50×25=1250(平方米).即面積可達1250平方米,符合設(shè)計要求.

還可以有其他一些符合要求的設(shè)計方案.請你試試看.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇大豐萬盈第二中學(xué)九年級上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

先閱讀,再回答問題:

如果x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,那么x1+x2,x1x2與系數(shù)a,b,c的關(guān)系是:x1+x2=-,x1x2.例如:若x1,x2是方程2x2-x-1=0的兩個根,則x1+x2=-=-,x1x2=-

若x1,x2是方程2x2+x-3=0的兩個根,(1)求x1+x2,x1x2

(2)求的值.(3) 求(x1-x22.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年北京師大附中九年級第一學(xué)期期中考試數(shù)學(xué)卷 題型:選擇題

在平面直角坐標系中,如果拋物線y=2x2+1不動,而把x軸、y軸分別向上、向右平移2個單位,那么在新坐標系下拋物線的解析式是 (    )

A.y=2(x-2)2+ 3     B.y=2(x-2)2-1

       C.y=2(x + 2)2-1     D.y=2(x + 2)2 + 3

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:填空題

已知:如圖,四邊形ABCD中,AB∥CD,AD∥BC,∠B=50°。求∠D的度數(shù)。
分析:可利用∠DCE作為中間量過渡。
解法1 :
∵AB∥CD,∠B=50°,(      )
∴∠DCE=∠_______ =_______ °。(____________ ,______)
又∵AD∥BC,(      )
∴∠D=∠______ =_______ °。(____________ ,____________)
想一想:如果以∠A作為中間量,如何求解?
解法2 :
∵AD∥BC,∠B=50°,(      )
∴∠A+∠B=______ 。(____________ ,____________)
即∠A=______ -______ =______ °-______ °=______ °。
∵DC∥AB,(      )
∴∠D+∠A=______ 。(_____________ ,_____________)
即∠D=______ -______ =______ °-______ °=______ °。

查看答案和解析>>

同步練習(xí)冊答案