已知二次函數(shù)的圖象如圖.
(1)求它的對(duì)稱(chēng)軸與x軸交點(diǎn)D的坐標(biāo);
(2)將該拋物線(xiàn)沿它的對(duì)稱(chēng)軸向上平移,設(shè)平移后的拋物線(xiàn)與x軸,y軸的交點(diǎn)分別為A、B、C三點(diǎn),若∠ACB=90°,求此時(shí)拋物線(xiàn)的解析式;
(3)設(shè)(2)中平移后的拋物線(xiàn)的頂點(diǎn)為M,以AB為直徑,D為圓心作⊙D,試判斷直線(xiàn)CM與⊙D的位置關(guān)系,并說(shuō)明理由.

【答案】分析:(1)根據(jù)對(duì)稱(chēng)軸公式求出x=-,求出即可;
(2)假設(shè)出平移后的解析式即可得出圖象與x軸的交點(diǎn)坐標(biāo),再利用勾股定理求出即可;
(3)由拋物線(xiàn)的解析式可得,A,B,C,M各點(diǎn)的坐標(biāo),再利用勾股定理逆定理求出CD⊥CM,即可證明.
解答:解:(1)由
,
∴D(3,0);

(2)方法一:
如圖1,設(shè)平移后的拋物線(xiàn)的解析式為
則C(0,k)OC=k,
令y=0即,
,x2=3-,
∴A,B,

=2k2+8k+36,
∵AC2+BC2=AB2
即:2k2+8k+36=16k+36,
得k1=4,k2=0(舍去),
∴拋物線(xiàn)的解析式為,

方法二:
,∴頂點(diǎn)坐標(biāo),
設(shè)拋物線(xiàn)向上平移h個(gè)單位,則得到C(0,h),頂點(diǎn)坐標(biāo),
∴平移后的拋物線(xiàn):
當(dāng)y=0時(shí),,得,x2=3+
∴A,B
∵∠ACB=90°,
∴△AOC∽△COB,則OC2=OA•OB(6分),
,
解得h1=4,h2=0(不合題意舍去),
∴平移后的拋物線(xiàn):

(3)方法一:
如圖2,由拋物線(xiàn)的解析式可得,
A(-2,0),B(8,0),C(0,4),M
過(guò)C、M作直線(xiàn),連接CD,過(guò)M作MH垂直y軸于H,則MH=3,

,
在Rt△COD中,CD==AD,
∴點(diǎn)C在⊙D上,

∴DM2=CM2+CD2
∴△CDM是直角三角形,∴CD⊥CM,
∴直線(xiàn)CM與⊙D相切.

方法二:
如圖3,由拋物線(xiàn)的解析式可得A(-2,0),B(8,0),C(0,4),M
作直線(xiàn)CM,過(guò)D作DE⊥CM于E,過(guò)M作MH垂直y軸于H,則MH=3,,由勾股定理得
∵DM∥OC,
∴∠MCH=∠EMD,
∴Rt△CMH∽R(shí)t△DME,
得DE=5,
由(2)知AB=10,∴⊙D的半徑為5.
∴直線(xiàn)CM與⊙D相切.
點(diǎn)評(píng):此題主要考查了二次函數(shù)的綜合應(yīng)用以及勾股定理以及逆定理的應(yīng)用,利用數(shù)形結(jié)合得出是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、已知二次函數(shù)的圖象如圖所示,那么此函數(shù)的解析式可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知二次函數(shù)的圖象如圖所示,根據(jù)圖中的數(shù)據(jù),
(1)求二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的頂點(diǎn)為P,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知二次函數(shù)的圖象如右圖,則下列結(jié)論中,正確的結(jié)論有( 。
①a+b+c>0  ②a-b+c<0   ③abc<0   ④b=2a   ⑤b>0.
A、5個(gè)B、4個(gè)C、3個(gè)D、2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知二次函數(shù)的圖象如圖所示,求它的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象如圖所示,
(1)求二次函數(shù)的解析式及頂點(diǎn)M的坐標(biāo);
(2)若點(diǎn)N為線(xiàn)段BM上的一點(diǎn),過(guò)點(diǎn)N作NQ⊥X軸于點(diǎn)Q,當(dāng)點(diǎn)N在BM上運(yùn)動(dòng)時(shí)(點(diǎn)N不與點(diǎn)B、點(diǎn)M重合),設(shè)NQ的長(zhǎng)為t,四邊形NQAC的面積
沒(méi)有空
沒(méi)有空
為S,求S與t之間的函數(shù)關(guān)系式及自變量的取值范圍;
(3)在對(duì)稱(chēng)軸右側(cè)的拋物線(xiàn)上是否存在點(diǎn)P,使△PAC為直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案