兩數(shù)之和為25,兩數(shù)之差為3,則這兩個(gè)數(shù)分別為_(kāi)_____.
設(shè)兩個(gè)數(shù)分別為x、y,根據(jù)題意得:
x+y=25
x-y=3
,
解得
x=14
y=11

故這兩個(gè)數(shù)分別為14、11.
答案填:14、11.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個(gè)三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開(kāi)式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)(a+b)2=a2+2ab+b2展開(kāi)式中的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對(duì)應(yīng)著(a+b)3=a3+3a2b+3ab2+b2展開(kāi)式中的系數(shù)等等.

(1)根據(jù)上面的規(guī)律,寫(xiě)出(a+b)5的展開(kāi)式.
(2)利用上面的規(guī)律計(jì)算:25-5×24+10×23-10×22+5×2-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個(gè)三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開(kāi)式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)(a+b)2=a2+2ab+b2展開(kāi)式中的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對(duì)應(yīng)著(a+b)3=a3+3a2b+3ab2+b2展開(kāi)式中的系數(shù)等等.

(1)根據(jù)上面的規(guī)律,則(a+b)5的展開(kāi)式=
a5+5a4b+10a3b2+10a2b3+5ab4+b5
a5+5a4b+10a3b2+10a2b3+5ab4+b5

(2)利用上面的規(guī)律計(jì)算:25-5×24+10×23-10×22+5×2-1=
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,并回答問(wèn)題.
畫(huà)一個(gè)直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長(zhǎng)為13,并且52+122=132.事實(shí)上,在任何一個(gè)直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方.如果直角三角形中,兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,則a2+b2=c2,這個(gè)結(jié)論就是著名的勾股定理.
請(qǐng)利用這個(gè)結(jié)論,完成下面的活動(dòng):
(1)一個(gè)直角三角形的兩條直角邊分別為6、8,那么這個(gè)直角三角形斜邊長(zhǎng)為
10
10

(2)滿足勾股定理方程a2+b2=c2的正整數(shù)組(a,b,c)叫勾股數(shù)組.例如(3,4,5)就是一組勾股數(shù)組.觀察下列幾組勾股數(shù)
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
請(qǐng)你寫(xiě)出有以上規(guī)律的第⑤組勾股數(shù):
11,60,61
11,60,61

(3)如圖,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的長(zhǎng)度.

(4)如圖,點(diǎn)A在數(shù)軸上表示的數(shù)是
-
5
-
5
,請(qǐng)用類似的方法在下圖數(shù)軸上畫(huà)出表示數(shù)
3
的B點(diǎn)(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知兩數(shù)之和是25,兩數(shù)之差是3,則這兩個(gè)數(shù)分別為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)請(qǐng)觀察:25=52,1225=352,112225=3352,1122225=33352…寫(xiě)出表示一般規(guī)律的等式,并加以證明.
(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑選另外兩個(gè)類似26、53的數(shù),使它們能表示成兩個(gè)平方數(shù)的和,把這兩個(gè)數(shù)相乘,乘積仍然是兩個(gè)平方數(shù)的和嗎?你能說(shuō)出其中的道理嗎?
注:有人稱這樣的數(shù)“不變心的數(shù)”.?dāng)?shù)學(xué)中有許多美妙的數(shù),通過(guò)分析,可發(fā)現(xiàn)其中的奧秘.
瑞士數(shù)學(xué)家歐拉曾對(duì)26(2)的性質(zhì)作了更進(jìn)一步的推廣.他指出:可以表示為四個(gè)平方數(shù)之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為四個(gè)平方數(shù)之和.即(a2+b2+c2十d2)(e2+f2+g2+h2)=A2+B2+C2+D2.這就是著名的歐拉恒等式.

查看答案和解析>>

同步練習(xí)冊(cè)答案