【題目】如圖,Rt△ABC中,,,,DBC的中點,若動點E1cm/s的速度從A點出發(fā),沿ABB點運動,設(shè)E點的運動時間為t秒,連接DE,當以B、D、E為頂點的三角形與△ABC相似時,t的值為( 。

A.23.5B.23.2C.23.4D.3.23.4

【答案】A

【解析】

求出AB=2BC=4cm,分兩種情況:①當∠EDB=ACB=90°時,DEAC,△EBD∽△ABC,得出AE=BE= AB=2cm,即可得出t=2s;②當∠DEB=ACB=90°時,證出△DBE∽△ABC,得出∠BDE=A=30°,因此BE=BD=cm,得出AE=3.5cmt=3.5s;即可得出結(jié)果.

解:∵∠ACB=90°,∠ABC=60°,

∴∠A=30°,

AB=2BC=4cm

分兩種情況:

①當∠EDB=ACB=90°時,

DEAC,所以△EBD∽△ABC,

EAB的中點,AE=BE=AB=2cm

t=2s;

②當∠DEB=ACB=90°時,

∵∠B=B,

∴△DBE∽△ABC,

∴∠BDE=A=30°,

DBC的中點,

BD=BC=1cm,

BE=BD=0.5cm,

AE=3.5cm,

t=3.5s

綜上所述,當以BD、E為頂點的三角形與△ABC相似時,t的值為23.5,

故選:A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是

A.a(chǎn)>0

B.當-1<x<3時,y>0

C.c<0

D.當x≥1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分為三個三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在解決問題:已知a=,求2a28a+1的值,他是這樣分析與解的:

a===2

a2=

∴(a﹣2)2=3,a2﹣4a+4=3

∴a2﹣4a=﹣1

∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1

請你根據(jù)小明的分析過程,解決如下問題:

(1)化簡+++…+

(2)若a=,求4a28a+1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.

(1)求每臺A型電腦和B型電腦的銷售利潤;

(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?

(3)實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型電腦70臺.若商店保持兩種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC中,AB=AC,BAC=120°,AC的垂直平分線EF交AC于點E,交BC于點F.試探索BF與CF的數(shù)量關(guān)系,寫出你的結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線與直線垂直相交于點,點在射線上運動(點不與點重合),點在射線上運動(點不與點重合).

(1)如圖1,已知、分別是的角平分線,

①當時,求的度數(shù);

②點在運動的過程中,的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況;若不發(fā)生變化,試求出的大小;

(2)如圖2,延長,已知的角平分線與的角平分線所在的直線分別相交于、,在中,如果有一個角是另一個角的3倍,請直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:若ab都是非負實數(shù),則a+b≥2.當且僅當a=b時,“=”成立.

證明:∵(2≥0,∴a-2+b≥0

a+b≥2.當且僅當a=b時,“=”成立.

舉例應(yīng)用:已知x0,求函數(shù)y=x的最小值.

解:y=x=2.當且僅當x=,即x=時,“=”成立.

∴當x=時,函數(shù)取得最小值,y最小=2

問題解決:

1)已知x0,求函數(shù)y=的最小值;

2)求代數(shù)式m-1)的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線AC經(jīng)過點(1,5)和(-1,1)與直線BC y = -2x -1相交于點C

1)求直線AC的解析式.

2)求直ACy軸交點A的坐標及直線BCy軸交點B的坐標.

3)求兩直線交點C的坐標.

4)求ABC的面積.

查看答案和解析>>

同步練習冊答案