某一次函數(shù)的圖象與x軸相交于點A(8,0),與y軸相交于點B(0,6),動點P、Q分別同時從A、B出發(fā),其中點P在線段AB上點向B移動,速度是2單位/秒.點Q在線段BO上,以1個單位/秒的速度向點O移動,設(shè)移動的時間為t(秒)
(1)求這個一次函數(shù)的解析式;
(2)四邊形OAPQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)當t為何值時,△BPQ是等腰三角形?
(4)若△BPQ是直角三角形,請直接寫出點P的坐標.

【答案】分析:(1)設(shè)一次函數(shù)的解析式為y=kx+b,把A(8,0),B(0,6)代入得到方程組,求出方程組的解,即可得到一次函數(shù)的解析式;
(2)根據(jù)勾股定理求出AB,根據(jù)銳角三角函數(shù)求出sinB,即可求出QD,根據(jù)三角形的面積公式求出即可;
(3)分為3種情況:當BP=BQ時,t=10-2t,t=;當QB=QP時,t+2t=10,t=;當PB=PQ時,t=(10-2t),t=,即可得到答案.
(4)根據(jù)直角三角形的性質(zhì)求出點P的坐標.
解答:解:(1)設(shè)一次函數(shù)的解析式為y=kx+b,
把A(8,0),B(0,6)代入得:
,
解得:,
∴一次函數(shù)的解析式為:y=-x+6,
答:一次函數(shù)的解析式為y=-x+6.

(2)解:∵OB=6,OA=8,
根據(jù)勾股定理得:AB=10,
△AOB的面積=×6×8=24,即可求出QD,
過點Q作QD⊥AB于D
∵sinB==
∴QD=BQ×=t
∴△BPQ的面積=×(10-2t)×t=-t2+4t
∴S=24-(-t2+4t)=t2-4t+24,
答:S與t之間的函數(shù)關(guān)系式是S=t2-4t+24.

(3)解:當BP=BQ時 t=10-2t,t=
當QB=QP時t+2t=10,t=
當PB=PQ時
t=(10-2t),t=
綜上所述.當t=時,△BPQ是等腰三角形,
答:當t=時,△BPQ是等腰三角形.

(4)解:點P的坐標為(,),(),
答:點P的坐標為(,),(,).
點評:本題主要考查對一次函數(shù)的性質(zhì),用待定系數(shù)法求出一次函數(shù)的解析式,解二元一次方程組,勾股定理,三角形的面積,等腰三角形的判定等知識點的理解和掌握,能熟練地運用這些性質(zhì)進行計算是解此題的關(guān)鍵,題型較好,難度適中.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

某一次函數(shù)的圖象與直線y=-x+6的交點A的橫坐標是4,與直線y=x-1的交點B的縱精英家教網(wǎng)坐標是1,求:
(1)此函數(shù)的解析式;
(2)作出此函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知某一次函數(shù)的圖象與正比例函數(shù)y=-
23
x
平行,且通過點A(0,4).
(1)求出此一次函數(shù)的解析式;
(2)若點(-8,m)和點(n,5)在一次函數(shù)的圖象上,求m、n的值;
(3)x在什么范圍內(nèi)取值時,這個一次函數(shù)的值是正數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某一次函數(shù)的圖象與x軸相交于點A(8,0),與y軸相交于點B(0,6),動點P、Q分別同時從A、B出發(fā),其中點P在線段AB上點向B移動,速度是2單位/秒.點Q在線精英家教網(wǎng)段BO上,以1個單位/秒的速度向點O移動,設(shè)移動的時間為t(秒)
(1)求這個一次函數(shù)的解析式;
(2)四邊形OAPQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)當t為何值時,△BPQ是等腰三角形?
(4)若△BPQ是直角三角形,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、某一次函數(shù)的圖象與直線y=2x-1沒有交點,但與直線y=-x+2有交點A,已知點A的橫坐標為3,則這個一次函數(shù)的解析式為
y=2x-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•紅橋區(qū)一模)某一次函數(shù)的圖象與直線y1=2x-1平行,但與直線y2=-x+2有交點A,已知點A的橫坐標為3,則這個一次函數(shù)的解析式為
y=2x-7
y=2x-7

查看答案和解析>>

同步練習冊答案