23、關于x的一元二次方程x2-4x+c=0有實數(shù)根,且c為正整數(shù).
(1)求c的值;
(2)若此方程的兩根均為整數(shù),在平面直角坐標系xOy中,拋物線y=x2-4x+c與x軸交于A、B兩點(A在B左側),與y軸交于點C.點P為對稱軸上一點,且四邊形OBPC為直角梯形,求PC的長;
(3)將(2)中得到的拋物線沿水平方向平移,設頂點D的坐標為(m,n),當拋物線與(2)中的直角梯形OBPC只有兩個交點,且一個交點在PC邊上時,直接寫出m的取值范圍.
分析:(1)若關于x的一元二次方程有實數(shù)根,那么根的判別式必大于等于0,可據(jù)此求出c的取值范圍,由于c為正整數(shù),即可求出符合條件的c值.
(2)首先根據(jù)方程有兩個整數(shù)根以及拋物線與x軸有兩個不同的交點,確定c的值,從而得到拋物線的解析式和對稱軸方程;由于四邊形OBPC是直角梯形,且CP∥OB,P在拋物線的對稱軸上,那么PC的長正好與拋物線對稱軸的值相同,由此得解.
(3)首先將(2)所得拋物線的解析式化為頂點坐標式,即可得到此時頂點D的坐標;
①拋物線向左平移,可先設出平移后拋物線的解析式;當點P位于拋物線對稱軸右側的函數(shù)圖象上時,可將點P坐標代入拋物線的解析式中,即可求得平移的距離;當點O位于拋物線對稱軸右側的函數(shù)圖象上時,將點O的坐標代入拋物線的解析式中,同樣能求出此時平移的距離;根據(jù)上面兩種情況所得的m值,即可得到m的取值范圍.
②拋物線向右平移,方法同①.
解答:解:(1)∵關于x的一元二次方程x2-4x+c=0有實數(shù)根,
∴△=16-4c≥0,∴c≤4.(1分)
又∵c為正整數(shù),∴c=1,2,3,4.(2分)

(2)∵方程兩根均為整數(shù),∴c=3,4;(3分)
又∵拋物線與x軸交于A、B兩點,∴c=3;
∴拋物線的解析式為y=x2-4x+3;(4分)
∴拋物線的對稱軸為x=2.
∵四邊形OBPC為直角梯形,且∠COB=90°,
∴PC∥BO,∵P點在對稱軸上,∴PC=2.(5分)

(3)由(2)知:y=x2-4x+3=(x-2)2-1;
①當拋物線向左平移時,設平移后的拋物線解析式為:y=(x-2+k)2-1;
易知P(2,3),當拋物線對稱軸右側的函數(shù)圖象經(jīng)過點P時,則有:
(2-2+k)2-1=3,
解得k=2(負值舍去);
即y=x2-1,此時m=0;
當拋物線對稱軸右側的函數(shù)圖象經(jīng)過點O時,則有:
(0-2+k)2-1=0,
解得k=1(舍去),k=3;
即y=(x-1)2-1,此時m=-1;
故當拋物線向作平移時,-2<m≤0(或-1≤m≤0).
②當拋物線向右平移時,同①可求得2<m≤4;
綜上所述,-2<m≤0或2<m≤4.(7分)(寫對一個給1分)
點評:此題考查了根的判別式、直角梯形的性質、二次函數(shù)解析式的確定以及函數(shù)圖象的平移等知識.在(3)題中,拋物線向左或向右平移都有符合條件的m值,因此需要分類討論,以免漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•北侖區(qū)二模)若關于x的一元二次方程a(x+m)2=3兩個實根為x1=-1,x2=3,則拋物線y=a(x+m-2)2-3與x軸的交點橫坐標分別是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是關于x的一元二次方程,則m=
65
2
65
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•沈陽)若關于x的一元二次方程x2+4x+a=0有兩個不相等的實數(shù)根,則a的取值范圍是
a<4
a<4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•蘭州一模)若x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數(shù)a,b,c有如下關系:x1+x2=-
b
a
,x1•x2=
c
a
,把它們稱為一元二次方程根與系數(shù)關系定理,請利用此定理解答一下問題:
已知x1,x2是一員二次方程(m-3)x2+2mx+m=0的兩個實數(shù)根.
(1)是否存在實數(shù)m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,請你說明理由;
(2)若|x1-x2|=
3
,求m的值和此時方程的兩根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•瀘州)若關于x的一元二次方程kx2-2x-1=0有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是(  )

查看答案和解析>>

同步練習冊答案