在Rt△ABC中,∠C=90゜,AC=5,BC=12,以C為圓心,R為半徑作圓與斜邊AB相切,則R的值為   
【答案】分析:R的長即為斜邊AB上的高,由勾股定理易求得AB的長,根據(jù)直角三角形面積的不同表示方法,即可求出R的值.
解答:解:Rt△ABC中,∠C=90°,AC=5,BC=12;
由勾股定理,得:AB2=52+122=169,
∴AB=13;
又∵AB是⊙C的切線,
∴CD⊥AB,
∴CD=R;
∵S△ABC=AC•BC=AB•R;
∴R==
故答案是:
點(diǎn)評:本題考查的知識(shí)點(diǎn)有:切線的性質(zhì)、勾股定理、直角三角形面積的求法;斜邊上的高即為圓的半徑是本題的突破點(diǎn)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長為(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊答案