如圖,一防洪攔水壩的橫斷面為梯形ABCD,壩頂寬BC=3米,壩高BE=6米,坡角α為45°,坡角β為63°,求橫斷面(梯形ABCD)的面積.

【答案】分析:首先過點C作CF⊥AD于點F,易得四邊形BCFE是矩形,即可求得EF與CF的長,又由坡角α為45°,坡角β為63°,利用三角函數(shù)的知識即可求得AE與DF的長.
解答:解:過點C作CF⊥AD于點F,
∵BC∥AD,BE是高,
∴四邊形BCFE是矩形,
∴EF=BC=3米,CF=BE=6米,
在Rt△ABE中,∠A=α=45°,
∴AE=BE=6米,
在Rt△CDF中,DF==≈3.06(米),
∴AD=AE+EF+DF=12.06(米),
∴橫斷面(梯形ABCD)的面積為:(BC+AD)•BE=×(3+12.06)×6=45.18(米2).
點評:此題考查了坡度坡角問題與梯形的性質(zhì).此題難度不大,能構(gòu)造直角三角形,并能借助于解直角三角形的知識求解是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)下面是明明同學(xué)的作業(yè)中,對“已知關(guān)于x方程x2+
3
kx+k2-k+2=0,判別這個方程根的情況.”一題的解答過程,請你判斷其是否正確,若有錯誤,請你寫出正確解答.
解:△=(
3
k)2-4×1×(k2-k+2)
=-k2+4k-8
=(k-2)2+4
∵(k-2)2≥0,4>0,∴△=(k-2)2+4>0
∴原方程有兩個不相等的實數(shù)根.
(2)如圖,一防洪攔水壩的橫斷面為梯形ABCD,壩頂寬BC=3米,壩高BE=6米,坡角α為45°,坡角β為63°,求橫斷面(梯形ABCD)的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃岡模擬)如圖,一防洪攔水壩的橫斷面為梯形ABCD,壩頂寬BC=3米,壩高BE=6米,坡角α為45°,坡角β為63°,求橫斷面(梯形ABCD)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2003•宜昌)(1)下面是明明同學(xué)的作業(yè)中,對“已知關(guān)于x方程x2+kx+k2-k+2=0,判別這個方程根的情況.”一題的解答過程,請你判斷其是否正確,若有錯誤,請你寫出正確解答.
解:△=(k)2-4×1×(k2-k+2)
=-k2+4k-8
=(k-2)2+4
∵(k-2)2≥0,4>0,∴△=(k-2)2+4>0
∴原方程有兩個不相等的實數(shù)根.
(2)如圖,一防洪攔水壩的橫斷面為梯形ABCD,壩頂寬BC=3米,壩高BE=6米,坡角α為45°,坡角β為63°,求橫斷面(梯形ABCD)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•宜昌)(1)下面是明明同學(xué)的作業(yè)中,對“已知關(guān)于x方程x2+kx+k2-k+2=0,判別這個方程根的情況.”一題的解答過程,請你判斷其是否正確,若有錯誤,請你寫出正確解答.
解:△=(k)2-4×1×(k2-k+2)
=-k2+4k-8
=(k-2)2+4
∵(k-2)2≥0,4>0,∴△=(k-2)2+4>0
∴原方程有兩個不相等的實數(shù)根.
(2)如圖,一防洪攔水壩的橫斷面為梯形ABCD,壩頂寬BC=3米,壩高BE=6米,坡角α為45°,坡角β為63°,求橫斷面(梯形ABCD)的面積.

查看答案和解析>>

同步練習(xí)冊答案