如圖,已知拋物線經(jīng)過坐標(biāo)原點O及A(-2
3
,0),其頂點為B(m,3),C是AB中點,點E是直線OC上的一個動點(點E與點O不重合),點D在y軸上,且EO=ED.
(1)求此拋物線及直線OC的解析式;
(2)當(dāng)點E運動到拋物線上時,求BD的長;
(3)連接AD,當(dāng)點E運動到何處時,△AED的面積為
3
3
4
?請直接寫出此時E點的坐標(biāo).
(1)∵拋物線過原點和A(-2
3
,0
),
∴拋物線對稱軸為x=-
3

∴B(-
3
,3
).
設(shè)拋物線的解析式為y=a(x+
3
2+3.
∵拋物線經(jīng)過(0,0),
∴0=3a+3.
∴a=-1.
∴y=-(x+
3
2+3,
=-x2-2
3
x.
∵C為AB的中點,A(-2
3
,0)、B(-
3
,3),
∴C(-
3
3
2
,
3
2
).
∴直線OC的解析式為y=-
3
3
x;

(2)如圖1,連接ED.
∵點E為拋物線y=-x2-2
3
x與直線y=-
3
3
x的交點(點E與點O不重合).
y=-
3
3
x
y=-x2-2
3
x
,解得
x=-
5
3
3
y=
5
3
x=0
y=0
(不合題意,舍去),
∴E(-
5
3
3
,
5
3
);
過E作EF⊥y軸于F,可得OF=
5
3

∵OE=DE,EF⊥y軸,
∴OF=DF,
∴DO=2OF=
10
3
,
∴D(0,
10
3
),
∴BD=
(
3
)2+(3-
10
3
)2
=
2
7
3


(3)如圖2,連接DE、AE、AD,設(shè)E(-a,
3
3
a)(a>0),
∵A(-2
3
,0),D(0,
2
3
3
a),
∴OA=2
3
,OD=
2
3
3
a,
∴S△AED=S△AOE+S△DOE-S△AOD=
1
2
×2
3
×
3
3
a+
1
2
×a×
2
3
3
a-
1
2
×2
3
×
2
3
3
a=
3
3
a2-a,
3
3
a2-a=
3
3
4
,
解得a=
3
3
2
;
∴E(-
3
3
2
,
3
2
),
同理,當(dāng)E在第四象限時,
E(
3
2
,-
1
2
).
故E點的坐標(biāo)為(-
3
3
2
,
3
2
)或(
3
2
,-
1
2
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)99象過點A(5,-1),B(1,1),C(-1,2),求此二次函數(shù)9解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=-
1
2
x2+bx+c
經(jīng)過A(-2,0),C(4,0)兩點,和y軸相交于點B,連接AB、BC.
(1)求拋物線的解析式(關(guān)系式).
(2)在第一象限外,是否存在點E,使得以BC為直角邊的△BCE和Rt△AOB相似?若存在,請簡要說明如何找到符合條件的點E,然后直接寫出點E的坐標(biāo),并判斷是否有滿足條件的點E在拋物線上;若不存在,請說明理由.
(3)在直線BC上方的拋物線上,找一點D,使S△BCD:S△ABC=1:4,并求出此時點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知拋物線y=mx2+nx+p與y=x2+6x+5關(guān)于y軸對稱,并與y軸交于點M,與x軸交于點A和B.
(1)求出y=mx2+nx+p的解析式,試猜想出一般形式y(tǒng)=ax2+bx+c關(guān)于y軸對稱的二次函數(shù)解析式(不要求證明);
(2)若AB中點是C,求sin∠CMB;
(3)如果一次函數(shù)y=kx+b過點M,且于y=mx2+nx+p相交于另一點N(i,j),如果i≠j,且i2-i+z=0和j2-j+z=0,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=-
1
2
x2+mx+m+
1
2
的圖象與x軸相交于點A、B(點A在點B的左側(cè)),與y軸相交于點C,頂點D在第一象限.過點D作x軸的垂線,垂足為H.
(1)當(dāng)m=
3
2
時,求tan∠ADH的值;
(2)當(dāng)60°≤∠ADB≤90°時,求m的變化范圍;
(3)設(shè)△BCD和△ABC的面積分別為S1、S2,且滿足S1=S2,求點D到直線BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中(如圖),已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A(0,3)和點B(3,0),其頂點記為點C.
(1)確定此二次函數(shù)的解析式,并寫出頂點C的坐標(biāo);
(2)將直線CB向上平移3個單位長度,求平移后直線l的解析式;
(3)在(2)的條件下,能否在直線上l找一點D,使得以點C、B、D、O為頂點的四邊形是等腰梯形.若能,請求出點D的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在坐標(biāo)平面上,拋物線與y軸的交點是(0,5),且經(jīng)過兩個長、寬分別為4和2的相同的長方形的頂點,則這條拋物線對應(yīng)的函數(shù)關(guān)系式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知OB=2,點A和點B關(guān)于N(0,-2)成中心對稱,拋物線y=ax2+bx+c經(jīng)過點A、O、B三點.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點P是x軸上的一動點,從點O出發(fā)沿射線OB方向運動,圓P半徑為
3
2
4
,速度為每秒1個單位,試求幾秒后圓P與直線AB相切;
(3)在此拋物線上,是否存在點P,使得以點P與點O、A、B為頂點的四邊形是梯形?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知A1,A2,A3,…,A2009是x軸上的點,且OA1=A1A2=A2A3=…=A2008A2009=1,分別過點A1,A2,A3,…,A2009作x軸的垂線交二次函數(shù)y=x2(x≥0)的圖象于點P1,P2,P3,…,P2009,若記△OA1P1的面積為S1,過點P1作P1B1⊥A2P2于點B1,記△P1B1P2的面積為S2,過點P2作P2B2⊥A3P3于點B2,記△P2B2P3的面積為S3,…,依次進(jìn)行下去,最后記△P2008B2008P2009的面積為S2009,則S2009-S2008=______.

查看答案和解析>>

同步練習(xí)冊答案