【題目】如圖,由7個(gè)形狀,大小完全相同的正六邊形組成的網(wǎng)格,正六邊形的頂點(diǎn)稱為格點(diǎn),已知每個(gè)正六邊形的邊長(zhǎng)為1,△ABC的頂點(diǎn)都在格點(diǎn)上,則△ABC的面積是( )
A.
B.2
C.
D.3
【答案】B
【解析】延長(zhǎng)AB,然后作出過點(diǎn)C與格點(diǎn)所在的直線,一定交于格點(diǎn)E.
正六邊形的邊長(zhǎng)為1,則半徑是1,則CE=4,
中間間隔一個(gè)頂點(diǎn)的兩個(gè)頂點(diǎn)之間的距離是: ,則△BCE的邊EC上的高是: ,
△ACE邊EC上的高是: ,
則S△ABC=S△AEC﹣S△BEC= ×4×( ﹣ )=2 .
故答案為:B.
根據(jù)正多邊形和圓,先延長(zhǎng)AB,然后作出過點(diǎn)C與格點(diǎn)所在的直線,一定交于格點(diǎn)E,根據(jù)S△ABC=S△AEC-S△BEC即可求得△ABC的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ABD中,∠C=∠D=90°,若利用“HL”證明△ABC≌△ABD,則需要添加的條件是________或________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi)的圖形M,N,給出如下定義:P為圖形M上任意一點(diǎn),Q為圖形N上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最小值,那么稱這個(gè)最小值為圖形M,N間的“閉距離“,記作d(M,N).
如圖,等腰直角三角形ABC的一條直角邊AB垂直數(shù)軸于點(diǎn)D,斜邊AC與數(shù)軸交于點(diǎn)E,數(shù)軸上點(diǎn)O表示的有理數(shù)是0,若AB=BC=8,AD=6,OD=2.點(diǎn)O到邊BC的距離與線段DB的長(zhǎng)相等.
(1)求d(點(diǎn)O,點(diǎn)E);
(2)求d(點(diǎn)O,△ABC).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿射線AB的方向平移2個(gè)單位到△DEF的位置,點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別點(diǎn)D、E、F.
(1)直接寫出圖中與AD相等的線段.
(2)若AB=3,則AE=______.
(3)若∠ABC=75°,求∠CFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:(每個(gè)小方格的邊長(zhǎng)為1)
(1)畫出△ABC先向右平移6格,再向下平移2格得到的△A1B1C1.
(2)線段AA1與線段BB1的關(guān)系是: .
(3)△ABC的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B,E分別在AC,DF上,BD,CE均與AF相交,∠1=∠2,∠C=∠D,求證:∠A=∠F.
證明:∵∠1=∠2(已知),∠2=∠3(______)
∴∠1=∠3(______)
∴BD∥CE(______)
∴∠C=∠ABD(______)
又∵∠C=∠D(已知)
∴∠D=∠ABD(_______)
∴________(________)
∴∠A=∠F(________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠有甲種原料130kg,乙種原料144kg.現(xiàn)用這兩種原料生產(chǎn)出A,B兩種產(chǎn)品共30件.已知生產(chǎn)每件A產(chǎn)品需甲種原料5kg,乙種原料4kg,且每件A產(chǎn)品可獲利700元;生產(chǎn)每件B產(chǎn)品需甲種原料3kg,乙種原料6kg,且每件B產(chǎn)品可獲利900元.設(shè)生產(chǎn)A產(chǎn)品x件(產(chǎn)品件數(shù)為整數(shù)件),根據(jù)以上信息解答下列問題:
(1)生產(chǎn)A,B兩種產(chǎn)品的方案有哪幾種;
(2)設(shè)生產(chǎn)這30件產(chǎn)品可獲利y元,寫出y關(guān)于x的函數(shù)解析式,寫出(1)中利潤(rùn)最大的方案,并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勝利中學(xué)在一次健康知識(shí)競(jìng)賽活動(dòng)中,抽取了一部分學(xué)生的測(cè)試成績(jī)(成績(jī)均為整數(shù)),整理后繪制成如圖所示的頻數(shù)直方圖,根據(jù)圖示信息,下列描述不正確的是( )
A. 抽查了50名學(xué)生
B. 成績(jī)?cè)?/span>60.5~70.5分范圍的頻數(shù)為2
C. 成績(jī)?cè)?/span>70.5~80.5分范圍的頻數(shù)比成績(jī)?cè)?/span>60.5~70.5分范圍的頻數(shù)多1
D. 成績(jī)?cè)?/span>70.5~80.5分范圍的頻率為0.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com