若直線y=-2與拋物線y=x2+kx-1只有一個交點,則


  1. A.
    k=2
  2. B.
    k=-2
  3. C.
    k=±2
  4. D.
    k的值無法確定
C
分析:要求它們的交點,即聯(lián)立解方程組,根據(jù)它們的圖象只有一個交點,則方程組有唯一一個解,根據(jù)一元二次方程的根的判別式即可求得k的取值范圍.
解答:把y=-2代入y=x2+kx-1,得
x2+kx+1=0,
根據(jù)題意,得△=k2-4=0,
k=±2.
故選C.
點評:此題考查了圖象的交點與方程組之間的聯(lián)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,宜昌西陵長江大橋?qū)儆趻佄锞形懸索橋,橋面(視為水平的)與主懸鋼索之間用垂直鋼拉索連接.橋兩端主塔塔頂?shù)暮0胃叨染?87.5米,橋的單孔跨度(即兩主塔之間的距離)900米,這里水面的海拔高度是74米.若過主塔塔頂?shù)闹鲬忆撍鳎ㄒ暈閽佄锞)最低點離橋面(視為直線)的高度為0.5米,橋面離水面的高度為19米.請你計算距離橋兩端主塔100米處垂直鋼拉索的長.(結(jié)果精確到0.1米)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點D,E分別是矩形OABC中AB和BC邊上的中點,點B的坐標(biāo)為(6,4)
(1)寫出A,C,E,D四點的坐標(biāo);并判斷點O到直線DE的距離是否等于線段的OE長;
(2)動點F在線段DE上,F(xiàn)G⊥x軸于G,F(xiàn)H⊥y軸于H,求矩形面積最大時點F的坐標(biāo)(利用圖1解答);
(3)我們給出如下定義:分別過拋物向上的兩點(不在x軸上)作x軸的垂線,如果以這兩點及垂足為頂點的矩形在這條拋物線與x軸圍成的封閉圖形內(nèi)部,則稱這個矩形是這條拋物線的內(nèi)接矩形,請你理解上述定義,解答下面的問題:若矩形OABC是某個拋物線的周長最大的內(nèi)接矩形,求這個拋物線的解析式(利用圖2解答).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分10分)

如圖所示,在直角坐標(biāo)系中,平行四邊形OABC的頂點坐標(biāo)B(6,3),C(2,3).

(1)求出過O、A、B三點的拋物線解析式;

(2)若直線恰好將平行四邊形OABC的面積分成相等的兩部分,試求b的值

 

(3)若軸、y軸的交點分別記為M、N,(1)中拋物線的對稱軸與此拋物

 

線及軸的交點分別記作點D、點E,試判斷△OMN與△OED是否相似?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=x2-2x-3與x軸交于AB兩點(點A在點B的左側(cè)),直線l與拋物線交于AC兩點,其中點C的橫坐標(biāo)為2.

(1)求A,B兩點的坐標(biāo)及直線AC的函數(shù)表達式;

(2)P是線段AC上的一個動點(PA,C不重合),過P點作y軸的平行線交拋物

線于點E,求△ACE面積的最大值;

(3)若直線PE為拋物線的對稱軸,拋物線與y軸交于點D,直線ACy軸交于點Q,

M為直線PE上一動點,則在x軸上是否存在一點N,使四邊形DMNQ的周長

最小,若存在,求出這個最小值及點M,N的坐標(biāo);若不存在,請說明理由.

(4)點H是拋物線上的動點,在x軸上是否存在點F,使AC、FH四個點為頂點

的四邊形是平行四邊形?如果存在,請直接寫出所有滿足條件的F點坐標(biāo);如果

不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省深圳市寶安區(qū)九年級第三次調(diào)研測試數(shù)學(xué) 題型:解答題

(本題滿分10分)

如圖所示,在直角坐標(biāo)系中,平行四邊形OABC的頂點坐標(biāo)B(6,3),C(2,3).

(1)求出過O、A、B三點的拋物線解析式;

(2)若直線恰好將平行四邊形OABC的面積分成相等的兩部分,試求b的值

 

(3)若軸、y軸的交點分別記為M、N,(1)中拋物線的對稱軸與此拋物

 

線及軸的交點分別記作點D、點E,試判斷△OMN與△OED是否相似?

 

查看答案和解析>>

同步練習(xí)冊答案