【題目】圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.
(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;
(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一個直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點,連接EF.
(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=3S△EDF,求AE的長;
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點A落在BC邊上的點M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結論;
②求EF的長;
(3)如圖③,若FE的延長線與BC的延長線交于點N,CN=1,CE=,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如圖1,當DE∥BC時,有DB EC.(填“>”,“<”或“=”)
(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉α(0°<α<180°)到圖2位置,則(1)中的結論還成立嗎?若成立,請給予證明;若不成立,請說明理由.
(3)拓展運用:如圖3,P是等腰直角三角形ABC內(nèi)一點,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某城市按以下規(guī)定收取每月的煤氣費:用氣不超過60立方米,按每立方米0.8元收費;如果超過60立方米,超過部分每立方米按1.2元收費.已知某戶用煤氣x立方米(x>60),則該戶應交煤氣費_____元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,等腰Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,連結AE、BF.則AE與BF是什么關系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結論有( )
A.4個 B.3個 C.2個 D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】愛好思考的小茜在探究兩條直線的位置關系查閱資料時,發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AN⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.
【特例探究】
(1)如圖1,當tan∠PAB=1,c=4時,a= ,b= ;
如圖2,當∠PAB=30°,c=2時,a= ,b= ;
【歸納證明】
(2)請你觀察(1)中的計算結果,猜想a2、b2、c2三者之間的關系,用等式表示出來,并利用圖3證明你的結論.
【拓展證明】
(3)如圖4,ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點G,AD=3,AB=3,求AF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com