【題目】小莉的爸爸一面利用墻(墻的最大可用長度為11m),其余三面用長為40m的塑料網(wǎng)圍成矩形雞圈(其俯視圖如圖所示矩形ABCD),設(shè)雞圈的一邊AB長為xm,面積ym2.
(1)寫出y與x的函數(shù)關(guān)系式;
(2)如果要圍成雞圈的面積為192m2的花圃,AB的長是多少?
【答案】(1) y=﹣2x2+40x;(2)當(dāng)AB的長為8m時,花圃的面積為192m2
【解析】(1)、利用矩形面積公式建立面積與AB的長的關(guān)系式;(2)、利用面積與AB的長的關(guān)系式在已知面積的情況下,求AB的長,由于是實(shí)際問題,AB的值也要受到限制.
(1)、由題意得:矩形ABCD的面積=x(40﹣2x),即矩形ABCD的面積y=﹣2x2+40x.
(2)、當(dāng)矩形ABCD的面積為192時,﹣2x2+40x=192.
解此方程得x1=8,x2=12>11(不合題意,舍去).
∴當(dāng)AB的長為8m時,花圃的面積為192m2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與y軸交于點(diǎn)A(0,2),對稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點(diǎn),點(diǎn)B在對稱軸左側(cè),BC=6.
(1)求此拋物線的解析式.
(2)點(diǎn)P在x軸上,直線CP將△ABC面積分成2:3兩部分,請直接寫出P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某公司員工的年收入情況,隨機(jī)抽查了公司部分員工年收入情況并繪制如圖所示統(tǒng)計圖.
(1)請按圖中數(shù)據(jù)補(bǔ)全條形圖;
(2)由圖可知員工年收入的中位數(shù)是 ,眾數(shù)是 ;
(3)估計該公司員工人均年收入約為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,已知點(diǎn)D,E,F分別是BC,AD,CE的中點(diǎn),且S△ABC=4,則S△BEF的等于( )
A. B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:△ABD是等腰三角形;
(2)若∠A=40°,求∠DBC的度數(shù);
(3)若AE=6,△CBD的周長為20,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計算:①13+(﹣22)﹣(﹣2)
②﹣4
③(×(﹣48)
④﹣14﹣(﹣1)[﹣23+(﹣3)2]
(2)化簡:①(3mn﹣2m2)+(﹣4m2﹣5mn)
②﹣(2a﹣3b)﹣2(﹣a+4b﹣1)
(3)先化簡再求值:7x2y﹣2(2x2y﹣3xy2)-(4x2y﹣xy2),其中x=﹣2,y=1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將圖1中的正方形剪開得到圖2,則圖2中共有4個正方形;將圖2中的一個正方形剪開得到圖3,圖3中共有7個正方形;將圖3中4個較小的正方中的一個剪開得到圖4,則圖4中共有10個正方形,照這個規(guī)律剪下去……
(1)根據(jù)圖中的規(guī)律補(bǔ)全下表:
圖形標(biāo)號 | 1 | 2 | 3 | 4 | 5 | 6 | n | |
正方形個數(shù) | 1 | 4 | 7 | 10 |
(2)求第幾幅圖形中有2020個正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC 中,AB=15,AC=13,高 AD=12,則△ABC 的周長是( )
A. 42B. 32C. 42 或 32D. 42 或 37
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=(k為常數(shù)).
(1)若點(diǎn)P1(,y1)和點(diǎn)P2(﹣,y2)是該反比例函數(shù)圖象上的兩點(diǎn),試?yán)梅幢壤瘮?shù)的性質(zhì)比較y1和y2的大小;
(2)設(shè)點(diǎn)P(m,n)(m>0)是其圖象上的一點(diǎn),過點(diǎn)P作PM⊥x軸于點(diǎn)M.若tan∠POM=2,PO=(O為坐標(biāo)原點(diǎn)),求k的值,并直接寫出不等式kx+>0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com