若等腰直角三角形的斜邊長(zhǎng)為2,則它的面積為


  1. A.
    數(shù)學(xué)公式
  2. B.
    1
  3. C.
    2
  4. D.
    數(shù)學(xué)公式
B
分析:設(shè)等腰直角三角形的直角邊為xcm,根據(jù)等腰直角三角形的性質(zhì)及勾股定理可求得直角邊的長(zhǎng),從而不難求得其面積.
解答:設(shè)等腰直角三角形的直角邊為xcm,則其斜邊長(zhǎng)為xcm,
x=2
∴x=,
∴該三角形的面積=××=1.
故選B.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)等腰直角三角形的性質(zhì)及勾股定理的運(yùn)用.解答該題時(shí),注意將隱含在題干中的已知條件:等腰直角三角形的兩條直角邊相等,挖掘出來(lái).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖①,將一張直角三角形紙片△ABC折疊,使點(diǎn)A與點(diǎn)C重合,這時(shí)DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對(duì)稱(chēng)軸EF折疊,這時(shí)得到了兩個(gè)完全重合的矩形(其中一個(gè)是原直角三角形的內(nèi)接矩形,另一個(gè)是拼合成的無(wú)縫隙、無(wú)重疊的矩形),我們稱(chēng)這樣兩個(gè)矩形為“疊加矩形”.
(1)如圖②,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請(qǐng)?jiān)趫D②中畫(huà)出折痕;
(2)如圖③,在正方形網(wǎng)格中,以給定的BC為一邊,畫(huà)出一個(gè)斜三角形ABC,使其頂點(diǎn)A在格點(diǎn)上,且△ABC折成的“疊加矩形”為正方形;
(3)若一個(gè)三角形所折成的“疊加矩形”為正方形,那么它必須滿(mǎn)足的條件是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板放在第一象限,斜靠在兩坐標(biāo)軸上,且精英家教網(wǎng)點(diǎn)A(0,2),點(diǎn)C(1,0),如圖所示,拋物線(xiàn)y=ax2-ax-2經(jīng)過(guò)點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線(xiàn)的解析式;
(3)在拋物線(xiàn)上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為
5
的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(-1,0),點(diǎn)B在拋物線(xiàn)y=ax2+ax-2上.
(1)點(diǎn)A的坐標(biāo)為
(0,2)
(0,2)
,點(diǎn)B的坐標(biāo)為
(-3,1)
(-3,1)
;
(2)拋物線(xiàn)的解析式為
y=
1
2
x2+
1
2
x-2
y=
1
2
x2+
1
2
x-2
;
(3)設(shè)(2)中拋物線(xiàn)的頂點(diǎn)為D,求△DBC的面積;
(4)在拋物線(xiàn)上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)A(0,2),C(-1,0),如圖所示.
(1)求點(diǎn)B的坐標(biāo);
(2)若以(-
1
2
,-
17
8
)為頂點(diǎn)的拋物線(xiàn)經(jīng)過(guò)點(diǎn)B,求該拋物線(xiàn)的解析式;
(3)在(2)中的拋物線(xiàn)上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,現(xiàn)將一張等腰直角三角形紙片ABC放在第二象限,斜靠在精英家教網(wǎng)兩坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(-3,1),且拋物線(xiàn)y=ax2+ax-4a經(jīng)過(guò)點(diǎn)B.
(Ⅰ)求拋物線(xiàn)的解析式;
(Ⅱ)求點(diǎn)A和點(diǎn)C的坐標(biāo);
(Ⅲ)以AC所在直線(xiàn)為對(duì)稱(chēng)軸,將△ABC折疊,問(wèn)點(diǎn)B的對(duì)稱(chēng)點(diǎn)B1是否落在拋物線(xiàn)上?再以AC的中點(diǎn)為對(duì)稱(chēng)中心,將△ABC作中心對(duì)稱(chēng)變換,這時(shí)點(diǎn)B的對(duì)稱(chēng)點(diǎn)B2是否落在拋物線(xiàn)上?若在,求出它們的坐標(biāo);若不在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案