【題目】A,B,C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.

【答案】
(1)解:畫樹狀圖得:

∵共有4種等可能的結(jié)果,兩次傳球后,球恰在B手中的只有1種情況,

∴兩次傳球后,球恰在B手中的概率為:


(2)解:畫樹狀圖得:

∵共有8種等可能的結(jié)果,三次傳球后,球恰在A手中的有2種情況,

∴三次傳球后,球恰在A手中的概率為: =


【解析】(1)事件分為兩個(gè)步驟,每次都有兩種情況,共有4種情況,兩次傳球后,球恰在B手中的概率為;(2)三次傳球供應(yīng)有222=8種機(jī)會(huì)均等情況,三次傳球后,球恰在A手中的概率為.
【考點(diǎn)精析】利用列表法與樹狀圖法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老李上周五以收盤價(jià)每股8元買入某公司股票10000股,下表為本周內(nèi)每日該股票的漲跌情況(單位:元):

星期

股票漲跌

-0.1

0.35

-0.15

-0.4

0.5

1)星期三的收盤價(jià)比老李的買入價(jià)漲或跌了多少元?

2)本周內(nèi)該股票的最高收盤價(jià)出現(xiàn)在星期幾?是多少元?

3)已知老李買進(jìn)股票時(shí)要付成交額1‰的手續(xù)費(fèi),賣出時(shí)還需要付成交額的1‰的印花稅和1‰的手續(xù)費(fèi).如果老李在星期五收盤前將該股票全部賣出,則他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣6,0).如圖1,正方形OBCD的頂點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)C在第二象限.現(xiàn)將正方形OBCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α得到正方形OEFG.

(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達(dá)式.

(2)若α為銳角,tanα= ,當(dāng)AE取得最小值時(shí),求正方形OEFG的面積.
(3)當(dāng)正方形OEFG的頂點(diǎn)F落在y軸上時(shí),直線AE與直線FG相交于點(diǎn)P,△OEP的其中兩邊之比能否為 :1?若能,求點(diǎn)P的坐標(biāo);若不能,試說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知
(1)化簡(jiǎn)A;
(2)若x滿足不等式組 ,且x為整數(shù)時(shí),求A的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)DBC邊的中點(diǎn),點(diǎn)EAC上一點(diǎn),將∠C沿DE翻折,使點(diǎn)C落在AB上的點(diǎn)F處,若∠AEF=50°,則∠A的度數(shù)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某項(xiàng)工程由甲、乙兩隊(duì)合做12天可以完成,共需工程費(fèi)用27720元.乙隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間是甲隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間的1.5倍,且甲隊(duì)每天的工程費(fèi)用比乙隊(duì)多250元.

1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

2)若工程管理部門決定從這兩個(gè)隊(duì)中選一個(gè)隊(duì)單獨(dú)完成此項(xiàng)工程,從節(jié)約資金的角度考慮,應(yīng)選擇哪個(gè)工程隊(duì)?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,,點(diǎn)是直線上一個(gè)動(dòng)點(diǎn)(不與重合),點(diǎn)邊上一個(gè)定點(diǎn), 過點(diǎn),交直線于點(diǎn),連接,過點(diǎn),交直線于點(diǎn)

如圖,當(dāng)點(diǎn)在線段上時(shí),求證:

的條件下,判斷這三個(gè)角的度數(shù)和是否為一個(gè)定值? 如果是,求出這個(gè)值,如果不是,說明理由.

如圖,當(dāng)點(diǎn)在線段 的延長(zhǎng)線上時(shí),(2)中的結(jié)論是否仍然成立?如果不成立, 請(qǐng)直接寫出之間的關(guān)系.

)當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),(2)中的結(jié)論是否仍然成立?如果不成立,請(qǐng)直接 寫出之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BD垂直平分AC,∠BCD=∠ADFAF⊥AC,

1)證明ABDF是平行四邊形;

2)若AF=DF=5,AD=6,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=a(x﹣m)2﹣a(x﹣m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個(gè)公共點(diǎn);
(2)設(shè)該函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1 , 0),B(x2 , 0),且x12+x22=25,求m的值;
(3)設(shè)該函數(shù)的圖象的頂點(diǎn)為C,與x軸交于A,B兩點(diǎn),且△ABC的面積為1,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案