已知,線(xiàn)段AB在數(shù)軸上且它的長(zhǎng)度為5,點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為2,則點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為
 
分析:此題應(yīng)考慮兩種情況:當(dāng)點(diǎn)B在點(diǎn)A的左邊或當(dāng)點(diǎn)B在點(diǎn)A的右邊.
解答:解:當(dāng)點(diǎn)B在點(diǎn)A的左邊時(shí),2-5=-3;
當(dāng)點(diǎn)B在點(diǎn)A的右邊時(shí),2+5=7.
則點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為-3或7.
故答案為:-3或7.
點(diǎn)評(píng):考查了數(shù)軸,注意此題的兩種情況:當(dāng)一個(gè)點(diǎn)向左平移的時(shí)候,用減法;當(dāng)一個(gè)點(diǎn)向右平移的時(shí)候,用加法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知A、B兩點(diǎn)在數(shù)軸上表示的數(shù)為a和b,M、N均為數(shù)軸上的點(diǎn),且OA<OB.
(1)若A、B的位置如圖所示,試化簡(jiǎn):|a|-|b|+|a+b|+|a-b|.精英家教網(wǎng)
(2)如圖,若|a|+|b|=8.9,MN=3,求圖中以A、N、O、M、B這5個(gè)點(diǎn)為端點(diǎn)的所有線(xiàn)段長(zhǎng)度的和;精英家教網(wǎng)
(3)如圖,M為AB中點(diǎn),N為OA中點(diǎn),且MN=2AB-15,a=-3,若點(diǎn)P為數(shù)軸上一點(diǎn),且PA=
23
AB,試求點(diǎn)P所對(duì)應(yīng)的數(shù)為多少?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知A、B兩點(diǎn)在數(shù)軸上表示的數(shù)為a和b,M、N均為數(shù)軸上的點(diǎn),且OA<OB.

(1)若A、B的位置如圖l所示,試化簡(jiǎn): -++

(2)如圖2,若+=8.9,MN=3,求圖中以A、N、O、M、B這5個(gè)點(diǎn)為端點(diǎn)的所

有線(xiàn)段長(zhǎng)度的和;

 (3)如圖3,M為AB中點(diǎn),N為OA中點(diǎn),且MN=2AB-15,a=-3,若點(diǎn)P為數(shù)軸上一點(diǎn),且PA=AB,試求點(diǎn)P所對(duì)應(yīng)的數(shù)為多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年湖北省武漢市青山區(qū)初一上學(xué)期數(shù)學(xué)期末考試數(shù)學(xué)卷 題型:解答題

已知A、B兩點(diǎn)在數(shù)軸上表示的數(shù)為a和b,M、N均為數(shù)軸上的點(diǎn),且OA<OB.
(1)若A、B的位置如圖l所示,試化簡(jiǎn): -++

(2)如圖2,若+=8.9,MN=3,求圖中以A、N、O、M、B這5個(gè)點(diǎn)為端點(diǎn)的所
有線(xiàn)段長(zhǎng)度的和;

(3)如圖3,M為AB中點(diǎn),N為OA中點(diǎn),且MN=2AB-15,a=-3,若點(diǎn)P為數(shù)軸上一點(diǎn),且PA=AB,試求點(diǎn)P所對(duì)應(yīng)的數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年湖北省武漢市青山區(qū)初二上學(xué)期數(shù)學(xué)期末考試數(shù)學(xué)卷 題型:解答題

已知A、B兩點(diǎn)在數(shù)軸上表示的數(shù)為a和b,M、N均為數(shù)軸上的點(diǎn),且OA<OB.

(1)若A、B的位置如圖l所示,試化簡(jiǎn): -++

(2)如圖2,若+=8.9,MN=3,求圖中以A、N、O、M、B這5個(gè)點(diǎn)為端點(diǎn)的所

有線(xiàn)段長(zhǎng)度的和;

 (3)如圖3,M為AB中點(diǎn),N為OA中點(diǎn),且MN=2AB-15,a=-3,若點(diǎn)P為數(shù)軸上一點(diǎn),且PA=AB,試求點(diǎn)P所對(duì)應(yīng)的數(shù)為多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案