若點A(m,n),點B(n,m)表示同一點則這一點一定在


  1. A.
    第二、四象限的角平分線上
  2. B.
    第一、三象限的角平分線上
  3. C.
    平行于X軸的直線上
  4. D.
    平行于Y軸的直線上
B
根據(jù)已知可得a=b,則點的橫、縱坐標相等,故這樣的點在直線y=x上.
解:∵點P(m,n),點Q(n,m)表示同一點,
∴m=n,
即這樣的點在直線y=x上,即在第一、三象限兩坐標軸夾角的平分線上.
故選B
本題涉及到的知識點為:橫、縱坐標相等的點在直線y=x上,即第一、三象限兩坐標軸夾角的平分線上;橫、縱坐標互為相反數(shù)的點在直線y=-x上,即第二、四象限兩坐標軸夾角的平分線上.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,直線y=
4
3
x+4
分別交x軸,y軸于A,B兩點,點C為OB的中點,點D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點A,B的坐標,并求直線AB與CD交點的坐標;
(2)動點P從點C出發(fā),沿線段CD以每秒1個單位長度的速度向終點D運動;同時,動點M從點A出發(fā),沿線段AB以每秒
5
3
個單位長度的速度向終點B運動,過點P作PH⊥OA,垂足為H,連接MP,MH.設點P的運動時間為t秒.
①若△MPH與矩形AOCD重合部分的面積為1,求t的值;
②點Q是點B關于點A的對稱點,問BP+PH+HQ是否有最小值?如果有,求出相應的點P的坐標;如果沒有,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知直線y=2x-1與雙曲線y=
k
x
交于第一象限內(nèi)一點A( m,1)
(1)直接寫出該雙曲線的函數(shù)表達式:
y=
1
x
y=
1
x

(2)根據(jù)圖象直接寫出解不等式2x-1>
1
x
(x>0)的解集:
x>1
x>1

(3)若點B(
a2+b2
2ab
,n)(a≠b)在雙曲線y=
k
x
上,點P(x0,0)是x負半軸上一動點,分別過點A、B作x軸的垂線交于點E1和點E2,連接PA、PB.
①求證:n<1;
②當P點沿x軸向點E1運動的過程中,試探索△PAE1的面積與△PBE2面積的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,設格點多邊形各邊上的格點的個數(shù)和為a,格點邊多邊形內(nèi)部的格點個數(shù)和為b,格點多邊形的面積為S,圖l、圖2是兩個格點多邊形.
(1)根據(jù)圖中提供的信息填表:
一般格點多邊形 a b a+2b S
多邊形1(圖1) 6 1
 
 
多邊形2(圖2) 7 2 11
 
(2)在給定的正三角形網(wǎng)格中分別畫出一個面積為3、4、5的格點多邊形:
(3)猜想S與a、b之間的關系:S=
 
(用含a、b的代數(shù)式表示);
(4)若一個格點多邊形的面積為S,b是否存在最大值和最小值?若存在求出最大值和最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

作一個圖形關于一條直線的軸對稱圖形,再將這個軸對稱圖形沿著與這條直線平行的方向平移,我們把這樣的圖形變換叫做關于這條直線的滑動對稱變換.在自然界和日常生活中,大量地存在這種圖形變換(如圖1),結合軸對稱和平移的有關性質(zhì),解答以下問題:精英家教網(wǎng)
(1)如圖2,在關于直線l的滑動對稱變換中,試證明:兩個對應點A,A′的連線被直線l平分;
(2)若點P是正方形ABCD的邊AD上的一點,點P關于對角線AC滑動對稱變換的對應點P′也在正方形ABCD的邊上,請僅用無刻度的直尺在圖3中畫出P′;
(3)定義:若點M到某條直線的距離為d,將這個點關于這條直線的對稱點N沿著與這條直線平行的方向平移到點M′的距離為s,稱[d,s]為點M與M′關于這條直線滑動對稱變換的特征量.如圖4,在平面直角坐標系xOy中,點B是反比例函數(shù)y=
3x
的圖象在第一象限內(nèi)的一個動點,點B關于y軸的對稱點為C,將點C沿平行于y軸的方向向下平移到點B′.
①若點B(1,3)與B′關于y軸的滑動對稱變換的特征量為[m,m+4],判斷點B′是否在此函數(shù)的圖象上,為什么?
②已知點B與B′關于y軸的滑動對稱變換的特征量為[d,s],且不論點B如何運動,點B′也都在此函數(shù)的圖象上,判斷s與d是否存在函數(shù)關系?如果是,請寫出s關于d的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:甘肅省中考真題 題型:解答題

如圖①,正方形ABCD中,點A、B的坐標分別為(0,10),(8,4),點C在第一象限,動點P在正方形ABCD的邊上,從點A出發(fā)沿A→B→C→D勻速運動,同時動點Q以相同速度在x軸正半軸上運動,當P點到達D點時,兩點同時停止運動,設運動的時間為t秒。
(1)當P點在邊AB上運動時,點Q的橫坐標x(單位長度)關于運動時間t(秒)的函數(shù)圖象如圖②所示,請 寫出點Q開始運動時的坐標及點P的運動速度;
(2)求正方形的邊長及頂點C的坐標;
(3)在(1)中當t為何值時,△OPQ的面積最大,并求此時P點的坐標;
(4)如果點P、Q保持原速度不變,當點P沿A→B→C→D勻速運動時,OP與PQ能否相等,若能,寫出所有符合條件的t的值;若不能,請說明理由。

查看答案和解析>>

同步練習冊答案