作業(yè)寶如圖,菱形ABCD的對角線BD長為8cm,∠ABC=120°,DE⊥AB于E,DF⊥BC于點F,則四邊形BEDF的面積為________.

16cm2
分析:連接BD,可得△ABD是等邊三角形,根據(jù)菱形的對稱性與等邊三角形的對稱性可得四邊形BEDF的面積等于△ABD的面積,然后求出DE的長度,再根據(jù)三角形的面積公式列式計算即可得解.
解答:解:如圖,連接BD,∵∠ABC=120°,
∴∠A=60°,AB=AD(菱形的邊長),
∴△ABD是等邊三角形,
∴DE=BD=×8=4(cm),
根據(jù)菱形的對稱性與等邊三角形的對稱性可得,四邊形BEDF的面積等于△ABD的面積,×8×4=16(cm2.)
故答案為:16cm2
點評:本題考查了菱形的性質(zhì),等邊三角形的判定與性質(zhì),作出輔助線構(gòu)造出等邊三角形是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的邊長為2,∠ABC=45°,則點D的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的對角線AC=6,BD=8,∠ABD=α,則下列結(jié)論正確的是(  )
A、sinα=
4
5
B、cosα=
3
5
C、tanα=
4
3
D、tanα=
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的邊長為6且∠DAB=60°,以點A為原點、邊AB所在的直線為x軸且頂點D在第一象限建立平面直角坐標(biāo)系.動點P從點D出發(fā)沿折線DCB向終點B以2單位/每秒的速度運動,同時動點Q從點A出發(fā)沿x軸負(fù)半軸以1單位/秒的速度運動,當(dāng)點P到達(dá)終點時停止運動,運動時間為t,直線PQ交邊AD于點E.
(1)求出經(jīng)過A、D、C三點的拋物線解析式;
(2)是否存在時刻t使得PQ⊥DB,若存在請求出t值,若不存在,請說明理由;
(3)設(shè)AE長為y,試求y與t之間的函數(shù)關(guān)系式;
(4)若F、G為DC邊上兩點,且點DF=FG=1,試在對角線DB上找一點M、拋物線ADC對稱軸上找一點N,使得四邊形FMNG周長最小并求出周長最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的邊長為8cm,∠B=60°,P、Q同時從A點出發(fā),點P以1cm/秒的速度沿A→C→B的方向運動,點Q以2cm/秒的速度沿A→B→C→D的方向運動.當(dāng)點Q運動到D點時,P、Q兩點同時停止運動.設(shè)P、Q運動的時間為x秒,△APQ與△ABC重疊部分的面積為ycm2(規(guī)定:點和線段是面積為0的三角形).
(1)當(dāng)x=
8
8
秒時,P和Q相遇;
(2)當(dāng)x=
(12-4
3
(12-4
3
秒時,△APQ是等腰直角三角形;
(3)當(dāng)x=
32
3
32
3
秒時,△APQ是等邊三角形;
(4)求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,菱形ABCD的周長為8cm,∠ABC:∠BAD=2:1,對角線AC、BD相交于點O,求BD及AC的長.

查看答案和解析>>

同步練習(xí)冊答案