如圖,在 Rt△ABC中,∠B=90°.ED是AC的垂直平分線,交AC于點(diǎn)D,交BC于點(diǎn)E,已知∠BAE=30°,則∠C的度數(shù)為    °.
【答案】分析:由已知條件,根據(jù)垂直平分線的性質(zhì),得到EA=EC,進(jìn)而得到∠EAD=∠ECD,利用等腰三角形的性質(zhì)和垂直平分線的性質(zhì)解答.
解答:解:∵ED是AC的垂直平分線,
∴AE=CE,
∴∠EAC=∠C,
又∵∠B=90°,∠BAE=30°,
∴∠AEB=60°,
又∵∠AEB=∠EAC+∠C=2∠C,
∴∠C=30°.
故答案為30.
點(diǎn)評:本題主要考查了線段的垂直平分線的性質(zhì)、直角三角形的兩銳角互余、三角形的一個(gè)外角等于它不相鄰的兩個(gè)內(nèi)角和,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠ACB=90°,AC=BC,D是AB的中點(diǎn),E、F分別在AC、BC上,且ED⊥FD.求證:S四邊形EDFC=
12
S△ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D.下列結(jié)論中,不一定成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湛江模擬)如圖,在Rt△AB′C′中,∠AC′B′=90°,∠B′AC′=45°,B′C′=3,Rt△ABC可以看作是由Rt△AB′C′繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)45°得到的,則AC的長為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,在Rt△AB′C′中,∠AC′B′=90°,∠B′AC′=45°,B′C′=3,Rt△ABC可以看作是由Rt△AB′C′繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)45°得到的,則AC的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣東省湛江市中考調(diào)研數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在Rt△AB′C′中,∠AC′B′=90°,∠B′AC′=45°,B′C′=3,Rt△ABC可以看作是由Rt△AB′C′繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)45°得到的,則AC的長為   

查看答案和解析>>

同步練習(xí)冊答案