如圖,△ABC與△ADE都是等邊三角形(三條邊都相等,三個(gè)內(nèi)角都相等的三角形),連結(jié)BD、CE交點(diǎn)記為點(diǎn)F.
(1)BD與CE相等嗎?請(qǐng)說(shuō)明理由.
(2)你能求出BD與CE的夾角∠BFC的度數(shù)嗎?
(3)若將已知條件改為:四邊形ABCD與四邊形AEFG都是正方形,連結(jié)BE、DG交點(diǎn)記為點(diǎn)M(如圖).請(qǐng)直接寫(xiě)出線段BE和DG之間的關(guān)系?
⑴ BD=CE
∵△ABC與△ADE都是等邊三角形(已知)
∴AB= AC,AD=AE,∠BAC=∠D AE=60°
∴∠BA D =∠C AE
在△BA D 和△C AE 中
AB=" AC"
∵ ∠BA D =∠C AE
AD=AE
∴ △BA D≌△C AE (邊角邊 )
∴BD=CE
⑵ 設(shè)BD與AC相交于點(diǎn)H
∵△BA D≌△C AE
∴∠A BD =∠A C E
∵∠A BD+∠BAH+∠AHB=∠A C E+∠HF C+∠FHC=180°
又∵∠AHB=∠FHC
∴∠HF C= BAH=60°
即BD與CE的夾角∠BFC為60°
⑶ BE=DG BE⊥DG
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||
B、
| ||
C、5:3 | ||
D、不確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com