【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點(diǎn)C的坐標(biāo)為(﹣2,0),點(diǎn)A的坐標(biāo)為(﹣6,3),求點(diǎn)B的坐標(biāo).
【答案】(1,4).
【解析】試題分析:過A和B分別作AD⊥OC于D,BE⊥OC于E,利用已知條件可證明△ADC≌△CEB,再由全等三角形的性質(zhì)和已知數(shù)據(jù)即可求出B點(diǎn)的坐標(biāo).
試題解析:解:過A和B分別作AD⊥OC于D,BE⊥OC于E,∵∠ACB=90°,∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中,∵∠ADC=∠CBE=90°,∠CAD=∠BCE,AC=BC,∴△ADC≌△CEB(AAS),∴DC=BE,AD=CE,∵點(diǎn)C的坐標(biāo)為(﹣2,0),點(diǎn)A的坐標(biāo)為(﹣6,3),∴OC=2,AD=CE=3,OD=6,∴CD=OD﹣OC=4,OE=CE﹣OC=3﹣2=1,∴BE=4,∴則B點(diǎn)的坐標(biāo)是(1,4).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某山區(qū)有23名中小學(xué)生因貧困失學(xué)需要捐助,資助一名中學(xué)生需要學(xué)習(xí)費(fèi)用a元,資助一名小學(xué)生需要學(xué)習(xí)費(fèi)用b元,某校學(xué)生積極捐款,初中各年級學(xué)生捐款數(shù)額與用其恰好能幫助的貧困中學(xué)生和小學(xué)生人數(shù)的部分情況如下表:
七年級 | 八年級 | 九年級 | |
捐款數(shù)額(元) | 4000 | 4200 | 7400 |
捐助貧困中學(xué)生(名) | 2 | 3 | |
捐助貧困小學(xué)生(名) | 4 | 3 |
(1)求a、b的值;
(2)九年級學(xué)生的捐款解決了其余貧困中小學(xué)生的學(xué)習(xí)費(fèi)用,請將九年級學(xué)生可捐助的貧困中、小學(xué)生人數(shù)直接填入上表中(不需要寫出計算過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)M(7,-1)關(guān)于x軸對稱的點(diǎn)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,用點(diǎn)A(3,1)表示放置3個胡蘿卜、1棵青菜,點(diǎn)B(2,3)表示放置2個胡蘿卜、3棵青菜.
(1)寫出其他各點(diǎn)C,D,E,F所表示的意義;
(2)若一只兔子從A到達(dá)B(順著方格線走),有以下幾條路可以選擇:①A→C→D→B;②A→F→D→B;③A→F→E→B.則走哪條路吃到的胡蘿卜最多?走哪條路吃到的青菜最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,一點(diǎn)P(﹣2,3)關(guān)于原點(diǎn)的對稱點(diǎn)P′的坐標(biāo)是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com