【題目】ABC中,AB=AC,BD垂直AC于點(diǎn)D,若,則頂角∠BAC=_____.

【答案】70°110°

【解析】

根據(jù)題意可知∠ABD=20°是一腰上的高和腰的夾角,根據(jù)此可求出頂角,有兩種情況,當(dāng)為銳角三角形和鈍角三角形時(shí).

解:(1)△ABC為銳角三角形時(shí),如圖1
∵∠ABD=20°,∠ADB=90°,
∴∠A=180°-ABD-ADB=180°-20°-90°=70°;
2)△ABC為鈍角三角形時(shí),如圖2
∵∠ABD=20°,∠ADB=90°
∴∠DAB=180°-ABD-ADB=180°-20°-90°=70°,
∴∠BAC=180°-DAB=110°,
所以頂角是70°110°

故答案為:70°110°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABC中,∠ABC90°,ABBC,點(diǎn)A,B分別在坐標(biāo)軸上.

(1)如圖1,若點(diǎn)C的橫坐標(biāo)為5,直接寫出點(diǎn)B的坐標(biāo) ;

(2)如圖2,若點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)By軸的正半軸上運(yùn)動時(shí),分別以OB,AB為邊在第一、第二象限作等腰RtOBF,等腰RtABE,連接EFy軸于點(diǎn)P,當(dāng)點(diǎn)By軸的正半軸上移動時(shí),PB的長度是否發(fā)生改變?若不變,求出PB的值;若變化,求PB的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿著過AB中點(diǎn)D的直線折疊,使點(diǎn)A落在BC邊上的A1,稱為第1次操作,折痕DEBC的距離記為h1;還原紙片后,再將△ADE沿著過AD中點(diǎn)D1的直線折疊,使點(diǎn)A落在DE邊上的A2處,稱為第2次操作,折痕D1E1BC的距離記為h2:按上述方法不斷操作下去…,經(jīng)過第2019次操作后得到的折痕D2018E2018,到BC的距離記為h2019:若h11,則h2019的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,若點(diǎn)從點(diǎn)出發(fā),以每秒1 cm的速度沿折線運(yùn)動,設(shè)運(yùn)動時(shí)間為(>0).

(1)若點(diǎn)上,且滿足,求此時(shí)的值;

(2)若點(diǎn)恰好在的角平分線上,求此時(shí)的值;

(3)在運(yùn)動過程中,當(dāng)為何值時(shí),為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC,ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且ADMND,BEMNE.

(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),△ADC和△CEB全等嗎?請說明理由;

(2)聰明的小亮發(fā)現(xiàn),當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),可得DE=AD+BE,請你說明其中的理由;

(3)小亮將直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置,發(fā)現(xiàn)DE、AD、BE之間存在著一個(gè)新的數(shù)量關(guān)系,請直接寫出這一數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,點(diǎn)、分別是、上任意的點(diǎn)(不與端點(diǎn)重合),且,連接相交于點(diǎn),連接相交于點(diǎn).給出如下幾個(gè)結(jié)論:;②;③一定不垂直;的大小為定值.其中正確的結(jié)論有________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B. F. C.E在一條直線上(點(diǎn)F,C之間不能直接測量),點(diǎn)A,D在直線l的異側(cè),測得AB=DE,ABDE,ACDF.

(1)求證:ABC≌△DEF;

(2)BE=13m,BF=4m,求FC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m是不小于﹣1的實(shí)數(shù),關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2,

(1)若x12+x22=6,求m值;

(2)令T=,求T的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形中,,線段上有動點(diǎn),過作直線邊于點(diǎn),并使得

當(dāng)重合時(shí),求的長;

在直線上是否存在一點(diǎn),使得是等腰直角三角形?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案