(1)如圖1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延長CB至點(diǎn)D,使BD=AB.
①求∠D的度數(shù);
②求tan75°的值.
(2)如圖2,點(diǎn)M的坐標(biāo)為(2,0),直線MN與y軸的正半軸交于點(diǎn)N,∠OMN=75°.求直線MN的函數(shù)表達(dá)式.

【答案】分析:(1)在直角三角形中利用角和邊之間的關(guān)系求角的度數(shù)及邊長即可;
(2)分別求得點(diǎn)M和N的坐標(biāo),利用待定系數(shù)法求函數(shù)的解析式即可.
解答:解:(1)①∵BD=AB,
∴∠D=∠BAD,
∴∠ABC=D+∠BAD=2∠D=30°,
∴∠D=15°,
②∵∠C=90°,
∴∠CAD=90°-∠D=90°-15°=75°,
∵∠ABC=30°,AC=m,
∴BD=AB=2m,BC=m,
∴CD=CB+BD=(2+)m,
∴tan∠CAD=2+
∴tan75°=2+;

(2)∵點(diǎn)M的坐標(biāo)為(2,0),∠OMN=75°,∠MON=90°,
∴ON=OM•tan∠OMN=OM•tan75°=2×(2+)=4+2,
∴點(diǎn)N的坐標(biāo)為(0,4+2),
設(shè)直線MN的函數(shù)表達(dá)式為y=kx+b,

解得:,
∴直線MN的函數(shù)表達(dá)式為y=(-2-)x+4+2
點(diǎn)評:本題考查了解直角三角形及待定系數(shù)法求函數(shù)的解析式的知識,解題的關(guān)鍵是選擇正確的邊角關(guān)系解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,如果AB∥CD,那么下面說法錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB、CD、MN相交于O,∠DOB=60°,BO⊥FO,OM平分∠DOF.
(1)求∠MOF的度數(shù);
(2)求∠AON的度數(shù);
(3)請直接寫出圖中所有與∠AON互余的角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB、CD被直線CE所截.
(1)若∠C=∠3,則∠1與∠C有什么關(guān)系,并加以說明;
(2)寫出能使AB∥CD的所有可能條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB、CD、EF相交于點(diǎn)O,∠COE=2∠AOE,已知∠BOC=105°,那么∠BOF=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB.CD相交于點(diǎn)O,OM⊥AB,NO⊥CD.
(1)若∠1=∠2,求∠AOD的度數(shù);
(2)若∠1=
14
∠BOC,求∠2和∠MOD.

查看答案和解析>>

同步練習(xí)冊答案