【題目】我們給出如下定義:兩個(gè)圖形和,在上的任意一點(diǎn)引出兩條垂直的射線與相交于點(diǎn)、,如果,我們就稱、為點(diǎn)的垂等點(diǎn),、為點(diǎn)的垂等線段,點(diǎn)為垂等射點(diǎn).
(1)如圖1,在平面直角坐標(biāo)系中,點(diǎn)為軸上的垂等射點(diǎn),過作軸的平行線,則直線上的為點(diǎn)的垂等點(diǎn)的是_______;
(2)如果一次函數(shù)圖象過,點(diǎn)為垂等射點(diǎn)的一個(gè)垂等點(diǎn)且另一個(gè)垂等點(diǎn)也在此一次函數(shù)圖象上,在圖2中畫出示意圖并寫出一次函數(shù)表達(dá)式;
(3)如圖3,以點(diǎn)為圓心,1為半徑作,垂等射點(diǎn)在上,垂等點(diǎn)在經(jīng)過(3,0),(0,3)的直線上,如果關(guān)于點(diǎn)的垂等線段始終存在,求垂等線段長的取值范圍(畫出圖形直接寫出答案即可).
【答案】(1);(2)或;(3).
【解析】
(1)如圖1,判斷與點(diǎn)P構(gòu)成等腰直角三角形的兩個(gè)點(diǎn)即可得到結(jié)論;
(2)①如圖2,當(dāng)垂等點(diǎn)直線右側(cè)時(shí),先根據(jù)AAS證明,進(jìn)而可得,進(jìn)一步即可求出點(diǎn)N坐標(biāo),再根據(jù)待定系數(shù)法即可求出一次函數(shù)解析式;②如圖3,當(dāng)垂等點(diǎn)直線左側(cè)時(shí),同理可求;
(3)如圖4,當(dāng)點(diǎn)在第一和第三象限的角平分線上且時(shí),取得最小或最大值,延長交于,連接,先用待定系數(shù)法求出直線的解析式,再根據(jù)等腰直角三角形的性質(zhì)求出PM的最小值和最大值,即得PM的范圍.
解:(1)如圖1,分別過,作⊥x軸于,軸于,
∴,
∴,
∴,所以為點(diǎn)的垂等點(diǎn),
故答案為:;
(2)①如圖2,當(dāng)垂等點(diǎn)在直線右側(cè)時(shí),作NF⊥x軸于點(diǎn)F,
依題意,可知,
∵,
∴.
∴(AAS).
∴.
∵,∴.
∵點(diǎn)在第一象限,∴.
∴過點(diǎn)、的一次函數(shù)表達(dá)式為;
②如圖3,當(dāng)垂等點(diǎn)直線左側(cè)時(shí),依題意同理可得,
∴過點(diǎn)、的一次函數(shù)表達(dá)式為;
(3)如圖4,當(dāng)點(diǎn)在第一和第三象限的角平分線上且時(shí),取得最小或最大值,
延長交于,連接,
∵,∴直線的解析式為,
當(dāng)PM最小時(shí),∵,∴,
∴的縱坐標(biāo)為,∴橫坐標(biāo)為,
∴,
同理可求得PM的最大值為,
∴長的取值范圍:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,,為上一點(diǎn),過點(diǎn)作的弦,設(shè).
(1)若時(shí),求、的度數(shù)各是多少?
(2)當(dāng)時(shí),是否存在正實(shí)數(shù),使弦最短?如果存在,求出的值,如果不存在,說明理由;
(3)在(1)的條件下,且,求弦的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+4(a≠0)與x軸交于點(diǎn)A和點(diǎn)B(2,0),與y軸交于點(diǎn)C,點(diǎn)D是拋物線在第一象限的點(diǎn).
(1)當(dāng)△ABD的面積為4時(shí),
①求點(diǎn)D的坐標(biāo);
②聯(lián)結(jié)OD,點(diǎn)M是拋物線上的點(diǎn),且∠MDO=∠BOD,求點(diǎn)M的坐標(biāo);
(2)直線BD、AD分別與y軸交于點(diǎn)E、F,那么OE+OF的值是否變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=3,BC=5,以點(diǎn)B的圓心,以任意長為半徑作弧,分別交BA、BC于點(diǎn)P、Q,再分別以P、Q為圓心,以大于PQ的長為半徑作弧,兩弧在∠ABC內(nèi)交于點(diǎn)M,連接BM并延長交AD于點(diǎn)E,則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中的第一象限內(nèi),反比例函數(shù)圖象過點(diǎn)和另一動(dòng)點(diǎn).
(1)求此函數(shù)表達(dá)式;
(2)如果,寫出的取值范圍;
(3)直線與坐標(biāo)軸交于點(diǎn),如果,直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠色出行是對(duì)環(huán)境影響最小的出行方式,“共享單車”已成為北京的一道靚麗的風(fēng)景線.某社會(huì)實(shí)踐活動(dòng)小
組為了了解“共享單車”的使用情況,對(duì)本校教師在3月6日至3月10日使用單車的情況進(jìn)行了問卷調(diào)查,
以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖的一部分:
請(qǐng)根據(jù)以上信息解答下列問題:
(1)3月7日使用“共享單車”的教師人數(shù)為人,并請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)不同品牌的“共享單車”各具特色,社會(huì)實(shí)踐活動(dòng)小組針對(duì)有過使用“共享單車”經(jīng)歷的教師做了進(jìn)一步調(diào)查,每位教師都按要求選擇了一種自己喜歡的“共享單車”,統(tǒng)計(jì)結(jié)果如圖,其中喜歡的教師有36人,求喜歡的教師的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場在“五一”促銷活動(dòng)中規(guī)定,顧客每消費(fèi)100元就能獲得一次中獎(jiǎng)機(jī)會(huì).為了活躍氣氛.設(shè)計(jì)了兩個(gè)抽獎(jiǎng)方案:
方案一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,轉(zhuǎn)出紅色可領(lǐng)取一份獎(jiǎng)品;
方案二:轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,兩次都轉(zhuǎn)出紅色可領(lǐng)取一份獎(jiǎng)品.(兩個(gè)轉(zhuǎn)盤都被平均分成3份)
(1)若轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤,求領(lǐng)取一份獎(jiǎng)品的概率;
(2)如果你獲得一次抽獎(jiǎng)機(jī)會(huì),你會(huì)選擇哪個(gè)方案?請(qǐng)采用列表法或樹狀圖說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上異于A、B的兩點(diǎn),連接CD,過點(diǎn)C作CE⊥DB,交CD的延長線于點(diǎn)E,垂足為點(diǎn)E,直徑AB與CE的延長線相交于點(diǎn)F.
(1)連接AC,AD,求證:∠DAC+∠ACF=180°;
(2)若∠ABD=2∠BDC,
①求證:CF是⊙O的切線;
②當(dāng)BD=6,tanF=時(shí),求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)A,B,C三點(diǎn)在⊙O上,AE平分∠BAC,交⊙O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E作直線l∥BC,連結(jié)BE.
(1)求證:直線l是⊙O的切線;
(2)如果DE=a,AE=b,寫出求BE的長的思路.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com