如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,將梯形的腰CD以點(diǎn)D為中心逆時(shí)針旋轉(zhuǎn)90°至DE,連接AE,CE,若△ADE的面積為3,那么BC的長(zhǎng)為                  ..

 

【答案】

5

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,梯形ABCD中,AD∥BC,∠ABC=90°,AD=4,BC=6,AB=3,以BC為x軸,AB為y軸,建立平面直角坐標(biāo)系xoy.
(1)求過(guò)A,C,D三點(diǎn)的拋物線的解析式;
(2)如果一動(dòng)點(diǎn)P由B點(diǎn)開(kāi)始沿BC邊以1個(gè)單位長(zhǎng)度/s的速度向點(diǎn)c移動(dòng),連接DP,作射線PE⊥DP,PE與直線AB交于點(diǎn)E,當(dāng)點(diǎn)P移動(dòng)到第t秒時(shí),點(diǎn)E與點(diǎn)B的距離為s;
①試寫(xiě)出s與t的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;
②s是否存在最大值?若存在,直接寫(xiě)出這個(gè)最大值,并求出這時(shí)PE所在直精英家教網(wǎng)線的解析式;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,梯形ABCD在平面直角坐標(biāo)系中,上底AD平行于x軸,下底BC交y軸于點(diǎn)E,點(diǎn)C(4,-2),點(diǎn)D(1,2),BC=9,sin∠ABC=
45

(1)求直線AB的解析式;
(2)若點(diǎn)H的坐標(biāo)為(-1,-1),動(dòng)點(diǎn)G從B出發(fā),以1個(gè)單位/秒的速度沿著B(niǎo)C邊向C點(diǎn)運(yùn)動(dòng)(點(diǎn)G可以與點(diǎn)B或點(diǎn)C重合),求△HGE的面積S(S≠0)隨動(dòng)點(diǎn)G的運(yùn)動(dòng)時(shí)間t′秒變化的函數(shù)關(guān)系式(寫(xiě)出自變量t′的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•成華區(qū)一模)如圖,Rt△ABC中,∠C=90°,BC=3cm,AB=5cm.點(diǎn)P從點(diǎn)A出發(fā)沿AC以1.5cm/s的速度向點(diǎn)C勻速運(yùn)動(dòng),到達(dá)點(diǎn)C后立刻以原來(lái)的速度沿CA返回;點(diǎn)Q從點(diǎn)B出發(fā)沿BA以1cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng).伴隨著P、Q的運(yùn)動(dòng),DE保持垂直平分PQ,且交PQ于點(diǎn)D,交折線PC-CB-BQ于點(diǎn)E.點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間是t秒(t>0),則當(dāng)t=
25
11
40
23
25
11
40
23
秒時(shí),四邊形BQDE為直角梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,梯形ABCD中,AD∥BC,∠ABC=Rt∠,點(diǎn)E為AB上一點(diǎn),且AE=BC=6,BE=AD=2,給出下列結(jié)論:①梯形的面積等于32;②CD的長(zhǎng)為4
5
;③DE平分∠ADC;④△DEC為等腰直角三角形;⑤∠BCD=60°.其中正確的個(gè)數(shù)有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,梯形ABCD在平面直角坐標(biāo)系中,上底AD平行于x軸,下底BC交y軸于點(diǎn)E,點(diǎn)C(4,-2),點(diǎn)D(1,2),BC=9,sin∠ABC=
4
5

(1)求直線AB的解析式;
(2)若點(diǎn)H的坐標(biāo)為(-1,-1),動(dòng)點(diǎn)G從B出發(fā),以1個(gè)單位/秒的速度沿著B(niǎo)C邊向C點(diǎn)運(yùn)動(dòng)(點(diǎn)G可以與點(diǎn)B或點(diǎn)C重合),求△HGE的面積S(S≠0)隨動(dòng)點(diǎn)G的運(yùn)動(dòng)時(shí)間t′秒變化的函數(shù)關(guān)系式(寫(xiě)出自變量t′的取值范圍);
(3)在(2)的條件下,當(dāng)t′=
7
2
秒時(shí),點(diǎn)G停止運(yùn)動(dòng),此時(shí)直線GH與y軸交于點(diǎn)N.另一動(dòng)點(diǎn)P開(kāi)始從B出發(fā),以1個(gè)單位/秒的速度沿著梯形的各邊運(yùn)動(dòng)一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(點(diǎn)P可以與梯形的各頂點(diǎn)重合).設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,點(diǎn)M為直線HE上任意一點(diǎn)(點(diǎn)M不與點(diǎn)H重合),在點(diǎn)P的整個(gè)運(yùn)動(dòng)過(guò)程中,求出所有能使∠PHM與∠HNE相等的t的值.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案