分析 先根據(jù)一元二次方程解的定義得到x12=x1+5,則x13=6x1+5,x22=x2+5,所以x13-2x22-4x2+5可化為6(x1-x2),再利用根與系數(shù)的關(guān)系得到x1+x2=1,x1x2=-5,接著利用完全平方公式可計(jì)算出x1-x2═±$\sqrt{21}$,從而得到x13-2x22-4x2+5=±6$\sqrt{21}$.
解答 解:∵x1、x2是方程x2-x-5=0的兩個實(shí)數(shù)根,
∴x12-x1-5=0,則x12=x1+5,
∴x13=x12+5x1=6x1+5,
x22-x2-5=0,則x22=x2+5,
∴x13-2x22-4x2+5=6x1+5-2(x2+5)-4x2+5=6(x1-x2),
∵x1、x2是方程x2-x-5=0的兩個實(shí)數(shù)根,
∴x1+x2=1,x1x2=-5,
∴x1-x2=±$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=±$\sqrt{1-4×(-5)}$=±$\sqrt{21}$,
∴x13-2x22-4x2+5=±6$\sqrt{21}$.
故答案為±6$\sqrt{21}$.
點(diǎn)評 本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=-$\frac{a}$,x1x2=$\frac{c}{a}$.也考查了一元二次方程解的定義.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com