如圖,在直角坐標(biāo)系中,已知點(diǎn)A(0,6),B(8,0).
(1)直接寫(xiě)出AB的長(zhǎng);
(2)點(diǎn)P(x,0)為線段OB上一動(dòng)點(diǎn)(點(diǎn)O、B除外),過(guò)點(diǎn)P作PQ∥OA交AB于點(diǎn)Q.
①若以線段PQ為直徑的⊙M與y軸相切,求點(diǎn)P的坐標(biāo);
②把△BPQ沿直線PQ向左側(cè)翻折疊到△CPQ,若△CPQ與梯形OPQA重疊部分的面積為s,求s關(guān)于x的函數(shù)關(guān)系式,并求當(dāng)x為何值時(shí),s的值最大,最大值是多少?

【答案】分析:(1)根據(jù)兩點(diǎn)間的距離公式可以求得線段AB的長(zhǎng)度;
(2)①由平行線分線段成比例知=,即=;再由圓的切線的性質(zhì)可以推知PQ=OP,即×(6-x)=x,則以求x的值;
②分類討論:如圖2,當(dāng)0<x<4時(shí),△CPQ與梯形OPQA重疊的部分是梯形OPQD,根據(jù)梯形的面積公式來(lái)計(jì)算重疊部分的面積即可;
如圖3,當(dāng)4≤x<8時(shí),△CPQ與梯形OPQA重疊部分是△CPQ,根據(jù)三角形的面積公式計(jì)算重疊部分的面積即可.
解答:解:(1)∵A(0,6),B(8,0).
∴AB==10;

(2)①如圖1,由題意知,OP=x,則BP=8-x.
∵PQ∥OA,
=,即=
解得,PQ=6-x.
當(dāng)以線段PQ為直徑的⊙M與y軸相切時(shí),PQ=OP,
PQ=OP,即×(6-x)=x,
解得,x=,
則點(diǎn)P的坐標(biāo)是(,0);

②如圖2,當(dāng)0<x<4時(shí),∵△CPQ與梯形OPQA重疊的部分是梯形OPQD,則BP=CP=8-x,
∴OC=CP-OP=8-2x.
∵OD∥PQ,
=,即=,
解得,OD=6-x,
∴s=×(OD+PQ)×OP
=×(6-x+6-x)x
=-x2+6x
=-(x-2+8.
∵x=滿足題意,
∴當(dāng)x=時(shí),s的值最大為8;
如圖3,當(dāng)4≤x<8時(shí),△CPQ與梯形OPQA重疊部分是△CPQ,則
PC=BP=8-x,
∴s=PC•PQ=(8-x)×(6-x)=(x-8)2
∵該拋物線的開(kāi)口方向向上,
∴當(dāng)4≤x<8時(shí),y隨x的增大而減小,
∴當(dāng)x=4是,s的值最大,最大值為6.
綜上所述,s關(guān)于x的函數(shù)關(guān)系式為:s=-x2+6x(0<x<4);
s=(x-8)2(4≤x<8);
且當(dāng)x=時(shí),s的最大值是8.
點(diǎn)評(píng):本題綜合考查了兩點(diǎn)間的距離公式,一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,平行線分線段成比例以及三角形、梯形面積的計(jì)算.解答(2)題時(shí),一定要分類討論,以防漏解.另外,注意數(shù)形結(jié)合數(shù)學(xué)思想在解題過(guò)程中的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫(huà)出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過(guò)第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過(guò)點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫(huà)出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6

(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案