如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).
(1)求直線BD和拋物線的解析式.
(2)若BD與拋物線的對稱軸交于點M,點N在坐標軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標.
(3)在拋物線上是否存在點P,使S△PBD=6?若存在,求出點P的坐標;若不存在,說明理由.
(1)直線BD的解析式為:y=﹣x+3。
拋物線的解析式為:y=(x﹣1)(x﹣3)=x2﹣4x+3。
(2)滿足條件的點N坐標為:(0,0),(﹣3,0)或(0,﹣3)。
(3)存在,理由見解析。
【解析】
分析:(1)由待定系數(shù)法求出直線BD和拋物線的解析式。
(2)首先確定△MCD為等腰直角三角形,因為△BND與△MCD相似,所以△BND也是等腰直角三角形.如答圖1所示,符合條件的點N有3個。
(3)如答圖2、答圖3所示,解題關鍵是求出△PBD面積的表達式,然后根據(jù)S△PBD=6的已知條件,列出一元二次方程求解。
解:(1)∵直線l:y=3x+3與x軸交于點A,與y軸交于點B,
∴A(﹣1,0),B(0,3)。
∵把△AOB沿y軸翻折,點A落到點C,∴C(1,0)。
設直線BD的解析式為:y=kx+b,
∵點B(0,3),D(3,0)在直線BD上,
∴,解得。
∴直線BD的解析式為:y=﹣x+3。
設拋物線的解析式為:y=a(x﹣1)(x﹣3),
∵點B(0,3)在拋物線上,∴3=a×(﹣1)×(﹣3),解得:a=1。
∴拋物線的解析式為:y=(x﹣1)(x﹣3)=x2﹣4x+3。
(2)∵拋物線的解析式為:y=x2﹣4x+3=(x﹣2)2﹣1,
∴拋物線的對稱軸為直線x=2,頂點坐標為(2,﹣1)。
直線BD:y=﹣x+3與拋物線的對稱軸交于點M,令x=2,得y=1,∴M(2,1)。
設對稱軸與x軸交點為點F,則CF=FD=MN=1,
∴△MCD為等腰直角三角形。
∵以點N、B、D為頂點的三角形與△MCD相似,∴△BND為等腰直角三角形。
如答圖1所示:
(I)若BD為斜邊,則易知此時直角頂點為原點O,
∴N1(0,0)。
(II)若BD為直角邊,B為直角頂點,則點N在x軸負半軸上,
∵OB=OD=ON2=3,∴N2(﹣3,0)。
(III)若BD為直角邊,D為直角頂點,則點N在y軸負半軸上,
∵OB=OD=ON3=3,∴N3(0,﹣3)。
∴滿足條件的點N坐標為:(0,0),(﹣3,0)或(0,﹣3)。
(3)存在,
假設存在點P,使S△PBD=6,設點P坐標為(m,n),
(I)當點P位于直線BD上方時,如答圖2所示,
過點P作PE⊥x軸于點E,則PE=n,DE=m﹣3,
S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE
=(3+n)•m﹣×3×3﹣(m﹣3)•n=6,
化簡得:m+n=7 ①。
∵P(m,n)在拋物線上,
∴n=m2﹣4m+3,代入①式整理得:m2﹣3m﹣4=0,
解得:m1=4,m2=﹣1。
∴n1=3,n2=8。
∴P1(4,3),P2(﹣1,8)。
(II)當點P位于直線BD下方時,如答圖3所示,
過點P作PE⊥y軸于點E,
則PE=m,OE=﹣n,BE=3﹣n,
S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6,
化簡得:m+n=﹣1 ②。
∵P(m,n)在拋物線上,∴n=m2﹣4m+3。
代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程無解.
∴此時點P不存在。
綜上所述,在拋物線上存在點P,使S△PBD=6,點P的坐標為(4,3)或(﹣1,8)。
科目:初中數(shù)學 來源: 題型:
4 |
n |
4 |
n |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com