【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=1,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△A1B1C1 , 且點(diǎn)A1落在邊AB邊上,取BB1的中點(diǎn)D,連接CD,則CD的長(zhǎng)為( )

A.
B.
C.2
D.3

【答案】A
【解析】解:∵∠C=90°,∠A=60°,AC=1,

∴∠ABC=30°,

∴AB=2,BC= AC=

由旋轉(zhuǎn)的性質(zhì)可知,CA=CA′,由∠A=60°,

∴△ACA′是等邊三角形,

∴AA′=1,

∴A′B=1,

由旋轉(zhuǎn)的性質(zhì)可知,△B1BC是等邊三角形,

∴BB1=BC= ,

∵BB1的中點(diǎn)是D,

∴CD⊥BB1,BD= BB1= ,

∴CD= BD= ,

所以答案是:A.

【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和含30度角的直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角);在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在筆直的道路AB上相向而行,甲騎自行車(chē)從A地到B地,乙駕車(chē)從B地到A地,假設(shè)他們分別以不同的速度勻速行駛,甲先出發(fā)6分鐘后,乙才出發(fā),在整個(gè)過(guò)程中,甲、乙兩人之間的距離y(千米)與甲出發(fā)的時(shí)間x(分)之間的函數(shù)圖象如圖.

1A地與B地相距______km,甲的速度為______km/分;

2)求甲、乙兩人相遇時(shí),乙行駛的路程;

3)當(dāng)乙到達(dá)終點(diǎn)A時(shí),甲還需多少分鐘到達(dá)終點(diǎn)B?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠準(zhǔn)備購(gòu)買(mǎi)AB兩種零件,已知A種零件的單價(jià)比B種零件的單價(jià)多30元,而用900元購(gòu)買(mǎi)A種零件的數(shù)量和用600元購(gòu)買(mǎi)B種零件的數(shù)量相等.

1)求A、B兩種零件的單價(jià);

2)根據(jù)需要,工廠準(zhǔn)備購(gòu)買(mǎi)A、B兩種零件共200件,工廠購(gòu)買(mǎi)兩種零件的總費(fèi)用不超過(guò)14700元,求工廠最多購(gòu)買(mǎi)A種零件多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點(diǎn),點(diǎn)B的坐標(biāo)為(2m,﹣m).

(1)求出m值并確定反比例函數(shù)的表達(dá)式;
(2)請(qǐng)直接寫(xiě)出當(dāng)x<m時(shí),y2的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC60°,DAB上一點(diǎn),連接CD

(1)如圖1,若∠BCA90°,CDAB,則______(直接寫(xiě)出結(jié)果)

(2)如圖2,若BDACECD的中點(diǎn),AEBC存在怎樣的數(shù)量關(guān)系,判斷并說(shuō)明理由;

(3)如圖3,CD平分∠ACBBF平分∠ABC,交CDF.若BFAC,求∠ACD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)y1= (a>0,a為常數(shù))和y2= 在第一象限內(nèi)的圖象如圖所示,點(diǎn)M在y2= 的圖象上,MC⊥x軸于點(diǎn)C,交y1= 的圖象于點(diǎn)A;MD⊥y軸于點(diǎn)D,交y1= 的圖象于點(diǎn)B,當(dāng)點(diǎn)M在y2= 的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:
①SODB=SOCA;
②四邊形OAMB的面積為2﹣a;
③當(dāng)a=1時(shí),點(diǎn)A是MC的中點(diǎn);
④若S四邊形OAMB=SODB+SOCA , 則四邊形OCMD為正方形.
其中正確的是 . (把所有正確結(jié)論的序號(hào)都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接濟(jì)川中學(xué)紅歌演講比賽,濟(jì)川校區(qū)七年級(jí)(15)(16)班決定訂購(gòu)?fù)惶追b,兩班一共有103人(15班人數(shù)多于16班),經(jīng)協(xié)商,某服裝店給出的價(jià)格如下:

購(gòu)買(mǎi)人數(shù)/

150

50100

100以上人

每套服裝價(jià)格/

50

45

40

例如:若購(gòu)買(mǎi)人數(shù)為60人,則購(gòu)買(mǎi)共需花費(fèi)60×45=2700元.

1)如果兩個(gè)班都以班為單位分別購(gòu)買(mǎi),則一共需花費(fèi)4875元,那么15,16班各有多少名學(xué)生?

2)如果兩個(gè)班聯(lián)合起來(lái),做為一個(gè)整體購(gòu)買(mǎi),則能節(jié)省多少元錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了創(chuàng)建國(guó)家衛(wèi)生城市,需要購(gòu)買(mǎi)甲、乙兩種類(lèi)型的分類(lèi)垃圾桶替換原來(lái)的垃圾桶,,,三個(gè)小區(qū)所購(gòu)買(mǎi)的數(shù)量和總價(jià)如表所示.

甲型垃圾桶數(shù)量(套)

乙型垃圾桶數(shù)量(套)

總價(jià)(元)

1)問(wèn)甲型垃圾桶、乙型垃圾桶的單價(jià)分別是每套多少元?

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AE=CF.

(1)求證:△BOE≌△DOF;

(2)連接DE,BF,若BD⊥EF,試探究四邊形EBFD的形狀,并對(duì)結(jié)論給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案