如圖,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底邊QR=6cm,點(diǎn)B、C、Q、R在同一直線l上,且C、Q兩點(diǎn)重合,如果等腰△PQR以1cm/秒的速度沿直線l箭頭所示方向勻速運(yùn)動(dòng),t秒時(shí)梯形ABCD與等腰△PQR重合部分的面積記為S平方厘米.
(1)當(dāng)t=4時(shí),求S的值;
(2)當(dāng)4≤t≤10,求S與t的函數(shù)關(guān)系式,并求出S的最大值.

【答案】分析:(1)首先判定當(dāng)t=4時(shí),點(diǎn)B與點(diǎn)Q重合,點(diǎn)P與點(diǎn)D重合,則求△BDC的面積即可.
(2)分別從4≤t<6與6≤t≤10去分析,求得各自的函數(shù)解析式,再分析各種情況下的最大值即可求得答案.
解答:解:(1)當(dāng)t=4時(shí),CQ=4cm,
過點(diǎn)A作AE⊥BC于E,過點(diǎn)D作DF⊥BC于F,
∵AE=DF=cm,∠AEB=∠DFC=90°,AB=CD,
∴△ABE≌△DFC,
∴BE=CF,
∵EF=AD=2cm,BC=4cm,
∴BE=CF=1cm,
∴點(diǎn)D與點(diǎn)P重合,
∴S△BDC=BC•DF=×4×=2(cm2);
(2)當(dāng)4≤t<6時(shí),P在線段AD上,作KH⊥QH,過點(diǎn)M作MN⊥BC于N,
∵∠Q=30°,∠1=60°,
∴∠2=∠1-∠Q=30°,
∠3=∠2=30°,
∴QB=BM=QC-BC=t-4,
∵∠R=∠Q=30°,∠DCB=∠ABC=60°,
∴∠CKR=∠DCB-∠R=30°=∠R,
∴KC=CR=6-t,
∴HK=KC•sin60°=(6-t)
∴同理:MN=(t-4),
∴S=S△PQR-S△BQM-S△CRK=QR•PG-BQ•EM-CR•FN
=×6×-×(t-4)2-×(6-t)2=-t2+5t-10
∵a=-<0,開口向下,
∴S有最大值,
當(dāng)t=-=5時(shí),S最大值為;
當(dāng)6≤t≤10時(shí),P在線段DA的延長線上,
∵∠1=60°,∠2=30°,
∴∠3=90°
∴RC=t-6,BR=4-RC=4-(t-6)=10-t,
∴TB=BR=,TR=BR=(10-t),
∴S=TB•TR=××(10-t)=t2-t+,
當(dāng)a>0時(shí),開口向上,-=10,
∴t=6時(shí),S最大值為2
綜上,t=5時(shí),S最大值為
點(diǎn)評:本小題主要考查等腰三角形、等腰梯形、解直角三角形、二次函數(shù)等基礎(chǔ)知識,考查運(yùn)算能力、推理能力和空間觀念.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊答案