精英家教網 > 初中數學 > 題目詳情
如圖,邊長為1的正方形ABCD繞點A逆時針旋轉45°后得到正方形AB1C1D1,邊B1C1與CD交于點O,則四邊形AB1OD的周長是( )

A.
B.2
C.1+
D.3
【答案】分析:連接AC,由正方形的性質可知∠CAB=45°,由旋轉的性質可知∠B1AB=45°,可知點B1在線段AC上,由此可得B1C=B1O,即AB1+B1O=AC,同理可得AD+DO=AC.
解答:解:連接AC,∵四邊形ABCD為正方形,
∴∠CAB=45°,
∵正方形ABCD繞點A逆時針旋轉45°,
∴∠B1AB=45°,
∴點B1在線段AC上,
易證△OB1C為等腰直角三角形,
∴B1C=B1O,
∴AB1+B1O=AC==,
同理可得AD+DO=AC=
∴四邊形AB1OD的周長為2
故選B.
點評:本題考查了正方形的性質,旋轉的性質,特殊三角形的性質.關鍵是根據旋轉角證明點B1在線段AC上.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,邊長為
π2
的正△ABC,點A與原點O重合,若將該正三角形沿數軸正方向翻滾一周,點A恰好與數軸上的點A′重合,則點A′對應的實數是
 

精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖將邊長為1的正方形OAPB沿軸正方向連續(xù)翻轉2006次,點P依次落在點,,,,……的位置,則的橫坐標=_________.

查看答案和解析>>

科目:初中數學 來源:2012-2013學年新人教版九年級(上)期中數學試卷(7)(解析版) 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案