已知:如圖,△ABC中,∠ABC=2∠C,BD平分∠ABC.
求證:AB•BC=AC•CD.

【答案】分析:根據(jù)∠ABC=2∠C,BD平分∠ABC可以求出∠ABD=∠DBC=∠C,然后證明出BD=CD與△ABD與△ACB相似,在根據(jù)相似三角形的對應(yīng)邊成比例列式整理即可得證.
解答:證明:∵∠ABC=2∠C,BD平分∠ABC,
∴∠ABD=∠DBC=∠C,
∴BD=CD,
在△ABD和△ACB中,,
∴△ABD∽△ACB(AA),
=,
即AB•BC=AC•BD,
∴AB•BC=AC•CD.
點評:本題主要考查了相似三角形的判定與性質(zhì),角平分線的定義,等角對等邊的性質(zhì),準確識圖比較重要,也考查了學生的識圖能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習冊答案