如圖,P是⊙O的弦AB上的點(diǎn),PA=6,PB=2,⊙O的半徑為5,則OP=   
【答案】分析:連接OA,過點(diǎn)O作OC⊥AB,垂足為C,由垂徑定理求得AC,再由勾股定理求得OC,再在直角三角形OPC中,利用勾股定理求得PO即可.
解答:解:如圖,連接OA,過點(diǎn)O作OC⊥AB,垂足為C,
∵PA=6,PB=2,
∴AC=4,
∴PC=2,
∵OA=5,
∴由勾股定理得,OC=3,
∴OP===
故答案為:
點(diǎn)評(píng):本題考查了勾股定理和垂徑定理,解此類題目要注意將圓的問題轉(zhuǎn)化成三角形的問題再進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:AB是⊙O的弦,△AOB是等邊三角形,C是⊙O上一點(diǎn),則∠C=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O的弦,矩形ABCD的邊CD與⊙O交于點(diǎn)E,F(xiàn),AF和BE相交于點(diǎn)G,連接AE,BF.
(1)寫出圖中每一對(duì)全等的三角形(不再添加輔助線);
(2)選擇你在(1)中寫出的全等三角形中的任意一對(duì)進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O的弦,C、D分別是弦AB和弧AB的中點(diǎn),OC⊥AB于C,若AB=2
5
cm,CD=1cm,則⊙O的半徑長(zhǎng)為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,AB是⊙O的弦,AB=4,過圓心O的直線垂直AB于點(diǎn)D,交⊙O于點(diǎn)C和點(diǎn)E,連接AC、BC、OB,cos∠ACB=
13
,延長(zhǎng)OE到點(diǎn)F,使EF=2OE.
(1)求⊙O的半徑;
(2)求證:BF是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O的弦,半徑OA=20cm,∠AOB=120°,求
(1)弦AB的長(zhǎng);
(2)△AOB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案