【題目】愛動腦筋的小明在學過用配方法解一元二次方程后,他發(fā)現(xiàn)二次三項式也可以配方,從而解決一些問題.

例如:;因此 有最小值是1,只有當 時,才能得到這個式子的最小值1

同樣,因此有最大值是8,只有當 時,才能得到這個式子的最大值8

1)當x   時,代數(shù)式﹣2x32+5有最大值為   

2)當x   時,代數(shù)式2x2+4x+3有最小值為   

3)矩形自行車場地ABCD一邊靠墻(墻長10m),在ABBC邊各開一個1米寬的小門(不用木板),現(xiàn)有能圍成14m長的木板,當AD長為多少時,自行車場地的面積最大?最大面積是多少?

【答案】(1)3,5;(2)-1,1;(3)32.

【解析】

1)類比例子得出答案即可;
2)根據(jù)題意利用配方法配成(1)中的類型,進一步確定最值即可;
3)根據(jù)題意利用長方形的面積列出式子,利用(1)(2)的方法解決問題.

解:(1)在代數(shù)式-2x-32+5中,當x=3時,有最大值5,
故答案為:3、5
2)∵2x2+4x+3=2x2+2x+1-1+3=2x+12+1,
∴當x=-1時,代數(shù)式2x2+4x+3有最小值為1,
故答案為:-1、1;
3)設AD=x,則AB=14-x+x-1+1=16-2x
S=x16-2x=-2x-42+32,
∴當AD=4m時,面積最大值為32m2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為落實國務院房地產(chǎn)調(diào)控政策,使“居者有其屋”.某市加快了廉租房的建設力度,2013年市政府共投資3億元人民幣建設了廉租房12萬平方米,2015年投資6.75億元人民幣建設廉租房,若在這兩年內(nèi)每年投資的增長率相同.

(1)求每年市政府投資的增長率;

(2)若這兩年內(nèi)的建設成本不變,問2015年建設了多少萬平方米廉租房?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線y=m-1x2+mx+m2-4的圖象經(jīng)過原點,且開口向上.

1)確定的值;

2)求此拋物線的頂點坐標;

3)畫出拋物線的圖象,結合圖象回答:當取什么值時,的增大而增大?

4)結合圖象直接回答:當取什么值時,?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三個盒子中分別裝有除顏色外都相同的小球,甲盒中裝有兩個球,分別為一個紅球和一個綠球;乙盒中裝有三個球,分別為兩個綠球和一個紅球;丙盒中裝有兩個球,分別為一個紅球和一個綠球,從三個盒子中各隨機取出一個小球

(1)請畫樹狀圖,列舉所有可能出現(xiàn)的結果

(2)請直接寫出事件取出至少一個紅球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在RtABC中,∠C=90°,BC=1AC=4,把邊長分別為,,,n個正方形依次放入ABC中,則第n個正方形的邊長_______________(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠準備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售額相同,3件甲種商品比2件乙種商品的銷售額多1500元.

1)甲種商品與乙種商品的銷售單價各多少元?

2)若甲、乙兩種商品的銷售總額不低于5400萬元,則至少銷售甲種商品多少萬件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,完成相應學習任務

旋轉(zhuǎn)對稱

把正n邊形繞著它的中心旋轉(zhuǎn)的整數(shù)倍后所得的正n邊形重合.我們說,正n邊形關于其中心有的旋轉(zhuǎn)對稱.一般地,如果一個圖形繞著某點O旋轉(zhuǎn)角α0α360°)后所得到的圖形與原圖形重合,則稱此圖形關于點O有角α的旋轉(zhuǎn)對稱.圖1就是具有旋轉(zhuǎn)對稱性質(zhì)的一些圖形.

任務:

1)如圖2,正六邊形關于其中心O   的旋轉(zhuǎn)對稱,中心對稱圖形關于其對稱中心有   的旋轉(zhuǎn)對稱;

2)圖3是利用旋轉(zhuǎn)變換設計的具有旋轉(zhuǎn)對稱性的一個圖形,將該圖形繞其中心至少旋轉(zhuǎn)   與原圖形重合;

3)請以圖4為基本圖案,在圖5中利用平移、軸對稱或旋轉(zhuǎn)進行圖案設計,使得設計出的圖案是中心對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y1x2與直線相交于AB兩點

(1)求A、B兩點的坐標

(2)點O為坐標原點,△AOB的面積等于___________

(3)當y1y2時,x的取值范圍是________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象過點和點,對稱軸為直線

求該二次函數(shù)的關系式和頂點坐標;

結合圖象,解答下列問題:

①當時,求函數(shù)的取值范圍.

②當時,求的取值范圍.

查看答案和解析>>

同步練習冊答案