解:(1)作AE⊥AB,CF⊥AB于點F,BG⊥CD于點G,由題意,∠EAC=53.1°,∠GBD=18.4°,

在△CAF中,CF⊥AB,∠ACF=∠EAC=53.1°
∴AF=AC•sin53.1°=10×0.8=8,CF=AC•cos53.1°=10×0.6=6,
∴BG=CF=6
又

,
∴FB=AB-AF=9-8=1,從而CG=BF=1
在△BDG中,BG⊥CD,∠GBD=18.4°
∵cot18.4°=3,
∴tan18.4°=

∴GD=BG•tan18.4°=6×

=2,
∴CD=CG+GD=1+2=3,

(海里/小時),
(2)由題意,不明物體沿CD移動,我巡邏船沿AB運動,且CD∥AB,
∴兩者之間的最近距離為直線CD與AB的距離.
設(shè)又過了t分鐘,不明物體移動到點P,我巡邏船到達點Q,這時PQ⊥AB,

則

,

,
∴

,解得t=5.
∴10:20兩者之間距離最近.
分析:(1)設(shè)10:15時,巡邏船在B處,作北偏東18.4°方向,交過點C的水平線于點D即可;利用53.1°的三角函數(shù)值求得AF,CF長,進而求得FB即CG的長,進而利用18.4°的正切值可得GD長,也就求得了CD長,除以時間即為移動的速度;
(2)兩者之間的最近距離為直線CD與AB的距離,根據(jù)GD和BQ相等可得相應(yīng)的關(guān)系式.
點評:考查解直角三角形的應(yīng)用;利用所給角的度數(shù)作出相應(yīng)輔助線,得到直角三角形是解決本題的突破點;利用相應(yīng)的銳角三角函數(shù)求得相關(guān)線段長是解決本題的關(guān)鍵.