為了考察冰川融化的狀況,一支科考隊(duì)在某冰川上設(shè)定一個(gè)以大本營O為圓心,半徑為4km 圓形考察區(qū)域,線段P1、P2是冰川的部分邊界線(不考慮其它邊界),當(dāng)冰川融化時(shí),邊界線沿著與其垂直的方向朝考察區(qū)域平行移動(dòng).若經(jīng)過n年,冰川的邊界線P1P2移動(dòng)的距離為s(km),并且s與n(n為正整數(shù))的關(guān)系是.以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,其中P1、P2的坐標(biāo)分別是(-4,9)、(-13,-3).

(1)求線段P1P2所在的直線對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)求冰川的邊界線移動(dòng)到考察區(qū)域所需要的最短時(shí)間.


(1);(2)6.

【解析】

(2)在中,當(dāng),則,當(dāng),則,

∴與x、y軸的交點(diǎn)坐標(biāo)是(0,)、(,0),由勾股定理,得


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


 閱讀下面短文:如圖1,△ABC是直角三角形,∠C=90°,現(xiàn)將△ABC補(bǔ)成長方形,使△ABC的兩個(gè)頂點(diǎn)為長方形一邊的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長方形這一邊的對(duì)邊上,那么符合要求的長方形可以畫出兩個(gè):長方形ACBD和長方形AEFB(如圖2)。

解答問題:

(1)設(shè)圖2中長方形ACBD和長方形AEFB的面積分別為S1,S2,則S1    S2(填“>”、“=”或“<”)

(2)如圖3,△ABC是鈍角三角形,按短文中的要求把它補(bǔ)成長方形,那么符合要求的長方形可以畫出        個(gè),利用圖3把它畫出來。

(3)如圖4,△ABC是銳角三角形且三邊滿足BC>AC>AB,按短文中的要求把它補(bǔ)成長方形,那么符合要求的長方形可以畫出       個(gè),利用圖4把它畫出來。

(4)在(3)中所畫出的長方形中,哪一個(gè)的周長最小?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


定義:P、Q分別是兩條線段a和b上任意一點(diǎn),線段PQ長度的最小值叫做線段與線段的距離.

已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四點(diǎn).

(1)根據(jù)上述定義,當(dāng)m=2,n=2時(shí),如圖1,線段BC與線段OA的距離是_____,

當(dāng)m=5,n=2時(shí),如圖2,線段BC與線段OA的距離(即線段AB的長)為______

 (2)如圖3,若點(diǎn)B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.

(3)當(dāng)m的值變化時(shí),動(dòng)線段BC與線段OA的距離始終為2,線段BC的中點(diǎn)為M.

①求出點(diǎn)M隨線段BC運(yùn)動(dòng)所圍成的封閉圖形的周長;

②點(diǎn)D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值,使以A、M、H為頂點(diǎn)的三角形與△AOD相似,若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,正六邊形的邊長為π,半徑是1的⊙O從與AB相切于點(diǎn)D的位置出發(fā),在正六邊形外部按順時(shí)針方向沿正六邊形滾動(dòng),又回到與AB相切于點(diǎn)D的位置,則⊙O自轉(zhuǎn)了【    】

A.4周          B.5周          C.6周          D.7周

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在矩形ABCD中,點(diǎn)P在邊CD上,且與C、D不重合,過點(diǎn)A作AP的垂線與CB的延長線相交于點(diǎn)Q,連接PQ,M為PQ中點(diǎn).

(1)求證:△ADP∽△ABQ;

(2)若AD=10,AB=20,點(diǎn)P在邊CD上運(yùn)動(dòng),設(shè)CP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線段BM的最小值;

(3)若AD= a,AB=,DP=8,隨著a的大小的變化,點(diǎn)M的位置也在變化.當(dāng)點(diǎn)M落在矩形ABCD內(nèi)部時(shí),求a的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知直線交坐標(biāo)軸于兩點(diǎn),以線段為邊向上作正方形

,過點(diǎn)的拋物線與直線另一個(gè)交點(diǎn)為

(1)請(qǐng)直接寫出點(diǎn)的坐標(biāo);

(2)求拋物線的解析式;

(3)若正方形以每秒個(gè)單位長度的速度沿射線下滑,直至頂點(diǎn)落在軸上時(shí)停止.設(shè)正方形落在軸下方部分的面積為,求關(guān)于滑行時(shí)間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,菱形ABCD的邊長為2,∠A=,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿B-C-D的路線向點(diǎn)D運(yùn)動(dòng)。設(shè)△ABP的面積為y (B、P兩點(diǎn)重合時(shí),△ABP的面積可以看做0),點(diǎn)P運(yùn)動(dòng)的路程為x,則y與x之間函數(shù)關(guān)系的圖像大致為【    】

A.       B.        C.       D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖所示,在直角坐標(biāo)系中放置一個(gè)矩形ABCD,其中AB=2,AD=1,將矩形ABCD沿x軸的正方向無滑動(dòng)的在x軸上滾動(dòng),當(dāng)點(diǎn)A離開原點(diǎn)后第一次落在x軸上時(shí),點(diǎn)A運(yùn)動(dòng)的路徑線與x軸圍成的面積為

       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,在直角梯形ABCD中,AD // BC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從A點(diǎn)開始沿AD邊向D以3cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿CB邊向點(diǎn)B以1cm/s的速度運(yùn)動(dòng),點(diǎn)P、Q分別從A、C同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t (s).

⑴當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).

①當(dāng)t為何值時(shí),以CD、PQ為兩邊,以梯形的底(AD或BC)的一部分(或全部)為第三邊能構(gòu)成一個(gè)三角形;②當(dāng)t為何值時(shí),四邊形PQCD為等腰梯形.

⑵若點(diǎn)P從點(diǎn)A開始沿射線AD運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P也隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),以P、Q、C、D為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案