【題目】如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第10(n是大于0的整數(shù))個(gè)圖形需要黑色棋子的個(gè)數(shù)是_______.
【答案】120
【解析】
根據(jù)題意,分析可得第1個(gè)圖形需要黑色棋子的個(gè)數(shù)為2×3-3,第2個(gè)圖形需要黑色棋子的個(gè)數(shù)為3×4-4,第3個(gè)圖形需要黑色棋子的個(gè)數(shù)為4×5-5,依此類推,可得第10個(gè)圖形需要黑色棋子的個(gè)數(shù)是(10+1)(10+2)-(10+2),計(jì)算可得答案.
第1個(gè)圖形是三角形,有3條邊,每條邊上有2個(gè)點(diǎn),重復(fù)了3個(gè)點(diǎn),需要黑色棋子2×3-3個(gè),
第2個(gè)圖形是四邊形,有4條邊,每條邊上有3個(gè)點(diǎn),重復(fù)了4個(gè)點(diǎn),需要黑色棋子3×4-4個(gè),
第3個(gè)圖形是五邊形,有5條邊,每條邊上有4個(gè)點(diǎn),重復(fù)了5個(gè)點(diǎn),需要黑色棋子4×5-5個(gè),
…
則第n個(gè)圖形需要黑色棋子的個(gè)數(shù)是(10+1)(10+2)-(10+2)=120.
故答案為:120.
此題考查規(guī)律型:圖形的變化類,解題時(shí)注意圖形中有重復(fù)的點(diǎn),即多邊形的頂點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十·一”黃金周期間,武漢動(dòng)物園在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù))
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人數(shù)變化單位:萬人 | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
(1)若9月30日的游客人數(shù)記為,請(qǐng)用的代數(shù)式表示10月2日的游客人數(shù)?
(2)請(qǐng)判斷七天內(nèi)游客人數(shù)最多的是哪天?請(qǐng)說明理由。
(3)若9月30日的游客人數(shù)為2萬人,門票每人10元。問黃金周期間武漢動(dòng)物園門票收入是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E為AD上一點(diǎn),FG⊥CE分別交AB、CD于F、G,垂足為O.
(1)求證:CE=FG;
(2)如圖2,連接OB,若AD=3DE,∠OBC=2∠DCE。
求的值;
若AD=3,則OE的長(zhǎng)為_________(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx﹣3的對(duì)稱軸為直線x=1,交x軸于A、B兩點(diǎn),交y軸于C點(diǎn),其中B點(diǎn)的坐標(biāo)為(3,0).
(1)直接寫出A點(diǎn)的坐標(biāo);
(2)求二次函數(shù)y=ax2+bx﹣3的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn),現(xiàn)將正方形OABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖).
(1)旋轉(zhuǎn)過程中,當(dāng)MN和AC平行時(shí),求正方形OABC旋轉(zhuǎn)的角度;
(2)試證明旋轉(zhuǎn)過程中,△MNO的邊MN上的高為定值;
(3)折△MBN的周長(zhǎng)為p,在旋轉(zhuǎn)過程中,p值是否發(fā)生變化?若發(fā)生變化,說明理由;若不發(fā)生變化,請(qǐng)給予證明,并求出p的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面請(qǐng)你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD……X”,請(qǐng)你作出猜想:當(dāng)∠AMN= °時(shí),結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(-5.5)+(-3.2)-(-2.5)-4.8
(2)-40-28-(-19)+(-24)
(3)
(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=6,BC=8,∠BCA的平分線與AB邊的垂直平分線相交于點(diǎn)D,DE⊥AC,DF⊥BC,垂足分別是E、F.
(1)求證:AE=BF;
(2)求AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com