(2012•驛城區(qū)模擬)如圖,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s.
(1)連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過程中,∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);
(2)請(qǐng)求出何時(shí)△PBQ是直角三角形?
分析:(1)先根據(jù)全等三角形的判定定理得出△ABQ≌△CAP,由全等三角形的性質(zhì)可知∠BAQ=∠ACP,故
∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,故可得出結(jié)論;
(2)設(shè)時(shí)間為t秒,則AP=BQ=tcm,PB=(4-t)cm,當(dāng)∠PQB=90°時(shí),因?yàn)椤螧=60°,所以PB=2BQ,即4-t=2t故可得出t的值,當(dāng)∠BPQ=90°時(shí),同理可得BQ=2BP,即t=2(4-t),由此兩種情況即可得出結(jié)論.
解答:解:(1)不變,∠CMQ=60°.
∵△ABC是等邊三角形,
∴等邊三角形中,AB=AC,∠B=∠CAP=60°
又∵點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s.
∴AP=BQ,
∴△ABQ≌△CAP(SAS),
∴∠BAQ=∠ACP,
∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;

(2)設(shè)時(shí)間為t秒,則AP=BQ=tcm,PB=(4-t)cm,
當(dāng)∠PQB=90°時(shí),
∵∠B=60°,
∴PB=2BQ,即4-t=2t,t=
4
3
,
當(dāng)∠BPQ=90°時(shí),
∵∠B=60°,
∴BQ=2BP,得t=2(4-t),t=
8
3
,
∴當(dāng)?shù)?span id="4ys424u" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
4
3
秒或第
8
3
秒時(shí),△PBQ為直角三角形.
點(diǎn)評(píng):本題考查的是等邊三角形的性質(zhì)及全等三角形的判定定理、直角三角形的性質(zhì),熟知等邊三角形的三個(gè)內(nèi)角都是60°是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•驛城區(qū)模擬)如圖,將一副三角板按如圖方式疊放,則∠α等于
75
75
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•驛城區(qū)模擬)如圖,CD是⊙O的切線,D是直徑AB的延長(zhǎng)線上一點(diǎn),∠D=30°,則∠BAC=
30
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•驛城區(qū)模擬)先化簡(jiǎn),(1-
1
x+2
x2-1
x+2
,然后從數(shù)軸上的整數(shù)點(diǎn)中選取一個(gè)到原點(diǎn)距離小于2的整數(shù)作為x的值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•驛城區(qū)模擬)國家教育部規(guī)定“中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí)”.某中學(xué)為了了解學(xué)生體育活動(dòng)情況,隨機(jī)抽查了520名畢業(yè)班學(xué)生,調(diào)查內(nèi)容是:“每天鍛煉是否超過1小時(shí)及未超過1小時(shí)的原因”.如圖是根據(jù)所得的數(shù)據(jù)制成的統(tǒng)計(jì)圖的一部分.
根據(jù)以上信息,解答下列問題:
(1)每天在校鍛煉時(shí)間超過1小時(shí)的人數(shù)是
390
390
;
(2)請(qǐng)將圖2補(bǔ)充完整;
(3)2011年我市初中畢業(yè)生約為8.8萬人,請(qǐng)你估計(jì)今年全市初中畢業(yè)生中每天鍛煉時(shí)間超過1小時(shí)的學(xué)生約有多少萬人?

查看答案和解析>>

同步練習(xí)冊(cè)答案