已知拋物線y=ax2+bx+c中,4a-b=0,a-b+c>0,拋物線與x軸有兩個(gè)不同的交點(diǎn),且這兩個(gè)交點(diǎn)之間的距離小于2,則下列判斷錯(cuò)誤的是( )
A.a(chǎn)bc<0
B.c>0
C.4a>c
D.a(chǎn)+b+c>0
【答案】分析:由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
解答:解:∵4a-b=0,∴拋物線的對(duì)稱軸為x==-2
∵a-b+c>0,
∴當(dāng)x=-1時(shí),y>0,
∵拋物線與x軸有兩個(gè)不同的交點(diǎn)且這兩個(gè)交點(diǎn)之間的距離小于2,
∴拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)位于-3與-1之間,b2-4ac>0
∴16a2-4ac=4a(4a-c)>0
據(jù)條件得圖象:
∴a>0,b>0,c>0,
∴abc>0,4a-c>0,
∴4a>c
當(dāng)x=1時(shí),y=a+b+c>0
故選A.
點(diǎn)評(píng):此題考查了二次函數(shù)各系數(shù)與函數(shù)圖象的關(guān)系,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點(diǎn),且精英家教網(wǎng)與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點(diǎn)D的坐標(biāo)和對(duì)稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點(diǎn)是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點(diǎn)坐標(biāo)為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點(diǎn)B,且于該拋物線交于另一點(diǎn)C(
ca
,b+8
),求當(dāng)x≥1時(shí)y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案