已知O為坐標(biāo)原點(diǎn),∠AOB=30°,∠ABO=90°,且點(diǎn)A的坐標(biāo)為(2,0).

(1) 求點(diǎn)B的坐標(biāo);

 (2) 若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)A、B、O三點(diǎn),求此二次函數(shù)的解析式;

 (3) 在(2)中的二次函數(shù)圖象的OB段(不包括點(diǎn)O、B)上,是否存在一點(diǎn)C,使得四邊形ABCO的面積最大?若存在,求出這個(gè)最大值及此時(shí)點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

解析:(1) 在Rt△OAB中,∵∠AOB=30°,

∴ OB=. 過(guò)點(diǎn)B作BD垂直于x軸,垂足為D,則  OD=,BD=,∴ 點(diǎn)B的坐標(biāo)為() .

 (2) 將A(2,0)、B()、O(0,0)三點(diǎn)的坐標(biāo)代入y=ax2+bx+c,得

解方程組,有 a=,b=,c=0.

∴ 所求二次函數(shù)解析式是y=x2+x.

(3) 設(shè)存在點(diǎn)C(x , x2+x) (其中0<x<),使四邊形ABCO面積最大.

∵△OAB面積為定值,

∴只要△OBC面積最大,四邊形ABCO面積就最大.

過(guò)點(diǎn)C作x軸的垂線CE,垂足為E,交OB于點(diǎn)F,則

S△OBC= S△OCF +S△BCF==,

而 |CF|=yC-yF=

∴ S△OBC= .

∴ 當(dāng)x=時(shí),△OBC面積最大,最大面積為.

此時(shí),點(diǎn)C坐標(biāo)為(),四邊形ABCO的面積為

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知O為坐標(biāo)原點(diǎn),∠AOB=30°,∠ABO=90°,且點(diǎn)A的坐標(biāo)為(2,0).
(1)求點(diǎn)B的坐標(biāo);
(2)若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)A、B、O三點(diǎn),求此二次函數(shù)的解析式;
(3)在(2)中的二次函數(shù)圖象的OB段(不包括點(diǎn)O、B)上,是否存在一點(diǎn)C,使得精英家教網(wǎng)四邊形ABCO的面積最大?若存在,求出這個(gè)最大值及此時(shí)點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2,3),⊙A的半徑為1,過(guò)精英家教網(wǎng)A作直線l平行于x軸,點(diǎn)P在l上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到圓上時(shí),求線段OP的長(zhǎng).
(2)當(dāng)點(diǎn)P的坐標(biāo)為(4,3)時(shí),試判斷直線OP與⊙A的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知O為坐標(biāo)原點(diǎn),點(diǎn)A(3,2)在反比例函數(shù)y=
kx
的圖象上.
(1)求k的值;
(2)點(diǎn)P是x軸的正半軸上的點(diǎn),若△OAP是以線段OA為一腰的等腰三角形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•燕山區(qū)一模)定義:對(duì)于平面直角坐標(biāo)系中的任意線段AB及點(diǎn)P,任取線段AB上一點(diǎn)Q,線段PQ長(zhǎng)度的最小值稱為點(diǎn)P到線段AB的距離,記作d(P→AB).
已知O為坐標(biāo)原點(diǎn),A(4,0),B(3,3),C(m,n),D(m+4,n)是平面直角坐標(biāo)系中四點(diǎn).根據(jù)上述定義,解答下列問(wèn)題:
(1)點(diǎn)A到線段OB的距離d(A→OB)=
2
2
2
2

(2)已知點(diǎn)G到線段OB的距離d(G→OB)=
5
,且點(diǎn)G的橫坐標(biāo)為1,則點(diǎn)G的縱坐標(biāo)為
1-
10
或1+
10
1-
10
或1+
10

(3)當(dāng)m的值變化時(shí),點(diǎn)A到動(dòng)線段CD的距離d (A→CD)始終為2,線段CD的中點(diǎn)為M.
①在圖(2)中畫(huà)出點(diǎn)M隨線段CD運(yùn)動(dòng)所圍成的圖形并求出該圖形的面積.
②點(diǎn)E的坐標(biāo)為(0,2),m>0,n>0,作MH⊥x軸,垂足為H.是否存在m的值,使得以A、M、H為頂點(diǎn)的三角形與△AOE相似?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•房縣模擬)問(wèn)題:對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1)、P2(x2,y2),我們把|x1-x2|+|y1-y2|叫做P1、P2兩點(diǎn)間的直角距離,記作d(P1,P2).如:P(-2,3)、Q(2,5)則P、Q兩點(diǎn)的直角距離為d(P,Q)=|-2-2|+|3-5|=6
請(qǐng)根據(jù)根據(jù)以上閱讀材料,解答下列問(wèn)題:
(1)計(jì)算M(-2,7),N(-3,-5)的直角距離d(M,N)=
13
13

(2)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足d(O,P)=1,則x與y之間滿足的關(guān)系式為
|x|+|y|=1
|x|+|y|=1

(3)設(shè)P0(x0,y0)是一定點(diǎn),Q(x,y)是直線y=ax+b上的動(dòng)點(diǎn),我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離,試求點(diǎn)M(4,2)到直線y=x+2的直角距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案