已知:如圖,在直角坐標系中,有菱形OABC,A點的坐標為(10,0),對角線OB、AC相交于D點,雙曲線(x>0)經(jīng)過D點,交BC的延長線于E點,且OB•AC=160,有下列四個結(jié)論:
①雙曲線的解析式為(x>0);
②E點的坐標是(4,8);
③sin∠COA=;
④AC+OB=,其中正確的結(jié)論有( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:過點C作CF⊥x軸于點F,由OB•AC=160可求出菱形的面積,由A點的坐標為(10,0)可求出CF的長,由勾股定理可求出OF的長,故可得出C點坐標,對角線OB、AC相交于D點可求出D點坐標,用待定系數(shù)法可求出雙曲線(x>0)的解析式,由反比例函數(shù)的解析式與直線BC的解析式聯(lián)立即可求出E點坐標;由sin∠COA=可求出∠COA的正弦值;根據(jù)A、C兩點的坐標可求出AC的長,由OB•AC=160即可求出OB的長.
解答:解:過點C作CF⊥x軸于點F,
∵OB•AC=160,A點的坐標為(10,0),
∴OA•CF=OB•AC=×160=80,菱形OABC的邊長為10,
∴CF===8,
在Rt△OCF中,
∵OC=10,CF=8,
∴OF===6,
∴C(6,8),
∵點D時線段AC的中點,
∴D點坐標為(),即(8,4),
∵雙曲線(x>0)經(jīng)過D點,
∴4=,即k=32,
∴雙曲線的解析式為:y=(x>0),故①錯誤;
∵CF=8,
∴直線CB的解析式為y=8,
,解得,
∴E點坐標為(4,8),故②正確;
∵CF=8,OC=10,
∴sin∠COA===,故③正確;
∵A(10,0),C(6,8),
∴AC==4,
∵OB•AC=160,
∴OB===8,
∴AC+OB=4+8=12,故④正確.
故選C.
點評:本題考查的是反比例函數(shù)綜合題,涉及到菱形的性質(zhì)及反比例函數(shù)的性質(zhì)、銳角三角函數(shù)的定義等相關(guān)知識,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1)已知,矩形ABDC的邊AC=3,對角線長為5,將矩形ABDC置于直角坐系內(nèi),點D與原點O重合.且反比例函數(shù)y=
k
x
的圖象的一個分支位于第一象限.
(1)求點A的坐標;
(2)若矩形ABDC從圖(1)的位置開始沿x軸的正方向移動,每秒移動1個單位,1秒后點A剛好落在反比例函數(shù)y=
k
x
的圖象的圖象上,求k的值;
(3)矩形ABCD繼續(xù)向x軸的正方向移動,AB、AC與反比例函數(shù)圖象分別交于P、Q如圖(2),設(shè)移動的總時間為t(1<t<5),分別寫出△BPD的面積S1、△DCQ的面積S2與t的函數(shù)關(guān)系式;
(4)在(3)的情況下,當t為何值時,S2=
10
7
S1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省蘭州四中九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖(1)已知,矩形ABDC的邊AC=3,對角線長為5,將矩形ABDC置于直角坐系內(nèi),點D與原點O重合.且反比例函數(shù)y=的圖象的一個分支位于第一象限.
(1)求點A的坐標;
(2)若矩形ABDC從圖(1)的位置開始沿x軸的正方向移動,每秒移動1個單位,1秒后點A剛好落在反比例函數(shù)y=的圖象的圖象上,求k的值;
(3)矩形ABCD繼續(xù)向x軸的正方向移動,AB、AC與反比例函數(shù)圖象分別交于P、Q如圖(2),設(shè)移動的總時間為t(1<t<5),分別寫出△BPD的面積S1、△DCQ的面積S2與t的函數(shù)關(guān)系式;
(4)在(3)的情況下,當t為何值時,S2=S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標系中,一次函數(shù)的圖象與y軸交于點A,

與x軸交于點B,與反比例函數(shù)的圖象分別交于點M,N,已知△AOB的面積為1,點M的縱坐

標為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆安徽滁州八年級下期末模擬數(shù)學(xué)試卷(滬科版)(解析版) 題型:解答題

已知:如圖1,平面直角坐標系中,四邊形OABC是矩形,點A,C的坐

標分別為(6,0),(0,2).點D是線段BC上的一個動點(點D與點B,C不重合),過點D作直線=-交折線O-A-B于點E.

(1)在點D運動的過程中,若△ODE的面積為S,求S與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)如圖2,當點E在線段OA上時,矩形OABC關(guān)于直線DE對稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點D,M,O′A′分別交CB,OA于點N,E.求證:四邊形DMEN是菱形;

(3)問題(2)中的四邊形DMEN中,ME的長為____________.

    

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣西欽州卷)數(shù)學(xué) 題型:解答題

(本題滿分8分)已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動點(不與點A、B重合),連接PA、PB、PC、PD.

    (1)如圖①,當PA的長度等于 

時,∠PAB=60°;

              當PA的長度等于    時,△PAD是等腰三角形;

    (2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角

坐標系(點A即為原點O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3.坐

標為(a,b),試求2 S1 S3-S22的最大值,并求出此時a,b的值.

 

查看答案和解析>>

同步練習(xí)冊答案