【題目】如圖,已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32,連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.
【答案】(1)證明見解析;(2)15.
【解析】試題分析:(1)由等腰三角形的性質可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又∵∠AEB=∠C=90°,利用“AA”可證△ABE∽△DBC;
(2)由等腰三角形的性質可知,BD=2BE,根據△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE.
(1)證明:∵AB=AD=25,
∴∠ABD=∠ADB,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,
∵AE⊥BD,
∴∠AEB=∠C=90°,
∴△ABE∽△DBC;
(2)解:∵AB=AD,又AE⊥BD,
∴BE=DE,
∴BD=2BE,
由△ABE∽△DBC,
得,
∵AB=AD=25,BC=32,
∴,
∴BE=20,
∴AE=.
科目:初中數學 來源: 題型:
【題目】如圖,一塊三角形玻璃損壞后,只剩下如圖所示的殘片,對圖中的哪些數據測量后就可到建材部門割取符合規(guī)格的三角形玻璃( )
A.∠A,∠B,∠C
B.∠A,線段AB,∠B
C.∠A,∠C,線段AB
D.∠B,∠C,線段AD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在函數y=kx(k>0)的圖象上有三點A1(x1,y1),A2(x2,y2),A3(x3,y3),已知x1<x2<0<x3,則下列各式中正確的是( )
A. y1<y2<0<y3 B. y3<0<y1<y2
C. y2<y1<y3<0 D. y3<y1<0<y2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC中,D、E分別是AB,AC上的點,AB=AC,AD=AE,然后將△ADE繞點A順時針旋轉一定角度,連接BD,CE,得到圖②,將BD,CE分別延長至M,N,使DM= BD,EN= CE,連接AM,AN,MN得到圖③,請解答下列問題:
(1)在圖②中,BD與CE的數量關系是;
(2)在圖③中,猜想AM與AN的數量關系,∠MAN與∠BAC的數量關系,并證明你的猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調查(每位同學只選最關注的一個),根據調查結果繪制了兩幅不完整的統(tǒng)計圖.根據圖中提供的信息,解答下列問題:
(1)這次調查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數.
(3)如果要在這5個主題中任選兩個進行調查,根據(2)中調查結果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于二次函數y=﹣3(x+1)2﹣2的圖象與性質,下列說法正確的是( 。
A.對稱軸是直線x=1,最小值是﹣2
B.對稱軸是直線x=1,最大值是﹣2
C.對稱軸是直線x=﹣1,最小值是﹣2
D.對稱軸是直線x=﹣1,最大值是﹣2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O是坐標原點,點A的坐標是(﹣4,0),點B的坐標是(0,b)(b>0),點P是直線AB上的一個動點,記點P關于y軸對稱的點為P′.
(1)當b=3時(如圖1),
①求直線AB的函數表達式.
(2)②在x軸上找一點Q(點O除外),使△APQ與△AOB全等,直接寫出點Q的所有坐標
(3)若點P在第一象限(如圖2),設點P的橫坐標為a,作PC⊥x軸于點C,連結AP′,CP′.當△ACP′是以點P′為直角頂點的等腰直角三角形時,求出a,b的值.
(4)當線段OP′恰好被直線AB垂直平分時(如圖3),直接寫出b= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法:
①若a與c相交,則a與b相交;
②若a∥b,b∥c,那么a∥c;
③過一點有且只有一條直線與已知直線平行;
④在同一平面內,兩條直線的位置關系有平行、相交、垂直三種.
其中錯誤的有( 。
A.3個
B.2個
C.1個
D.0個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com