(2013•鎮(zhèn)江)如圖,五邊形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=120°,AB=CD=1,AE=2,則五邊形ABCDE的面積等于
13
3
4
13
3
4
分析:延長(zhǎng)DC,AB交于點(diǎn)F,作AG∥DE交DF于點(diǎn)G,四邊形AFDE是等腰梯形,且∠F=∠D=60°,△AFG是等邊三角形,四邊形AGDE是平行四邊形,求得等腰梯形AFDE的面積和△BCF的面積,二者的差就是所求五邊形的面積.
解答:解:延長(zhǎng)DC,AB交于點(diǎn)F,作AG∥DE交DF于點(diǎn)G.
∵AE∥CD,∠A=∠E=120°,
∴四邊形AFDE是等腰梯形,且∠F=∠D=60°,△AFG是等邊三角形,四邊形AGDE是平行四邊形.
設(shè)BF=x,
∵在直角△BCF中,∠BCF=90°-∠F=30°
∴FC=2x,
∴FD=2x+1.
∵平行四邊形AGDE中,DG=AE=2,
∴FG=2x-1,
∵△AFG是等邊三角形中,AF=FG,
∴x+1=2x-1,
解得:x=2.
在直角△BCF中,BC=BF•tanF=2
3
,
則S△BCF=
1
2
BF•BC=
1
2
×2×2
3
=2
3

作AH⊥DF于點(diǎn)H.
則AH=AF•sinF=3×
3
2
=
3
3
2
,
則S梯形AFDE=
1
2
(AE+DF)•AH=
1
2
×(2+5)•
3
3
2
=
21
3
4

∴S五邊形ABCDE=S梯形AFDE-S△BCF=
21
3
4
-2
3
=
13
3
4

故答案是:
13
3
4
點(diǎn)評(píng):本題考查了等腰梯形的判定與性質(zhì),直角三角形的性質(zhì),正確求得BF的長(zhǎng)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江)如圖,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,則∠B=
50
50
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江)如圖,A、B、C是反比例函數(shù)y=
k
x
(x<0)
圖象上三點(diǎn),作直線l,使A、B、C到直線l的距離之比為3:1:1,則滿足條件的直線l共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江)如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點(diǎn)O和點(diǎn)A(2,0).
(1)寫出拋物線的對(duì)稱軸與x軸的交點(diǎn)坐標(biāo);
(2)點(diǎn)(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大;
(3)點(diǎn)B(-1,2)在該拋物線上,點(diǎn)C與點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱,求直線AC的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江)如圖1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,點(diǎn)D在邊AB的延長(zhǎng)線上,BD=3,過點(diǎn)D作DE⊥AB,與邊AC的延長(zhǎng)線相交于點(diǎn)E,以DE為直徑作⊙O交AE于點(diǎn)F.
(1)求⊙O的半徑及圓心O到弦EF的距離;
(2)連接CD,交⊙O于點(diǎn)G(如圖2).求證:點(diǎn)G是CD的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案