如圖,點(diǎn)A、B、C分別是⊙O上的點(diǎn),∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.

(1)判斷AP與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求PD的長(zhǎng).

(1)相切;(2)

解析試題分析:(1)連接OA,先根據(jù)圓周角定理求得∠AOC的度數(shù),再根據(jù)圓的基本性質(zhì)求得∠ACP、∠CAO的度數(shù),即可求得∠AOP的度數(shù),再結(jié)合AP=AC可求得∠P的度數(shù),即可作出判斷;
(2)連接AD,由CD是⊙O的直徑可得∠CAD=90°,再根據(jù)30°角的正切函數(shù)可求得AD的長(zhǎng),由∠ADC=∠B=60°,可求得∠PAD的度數(shù),從而可以求得結(jié)果.
(1)連接OA

∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠ACP=∠CAO=30°,
∴∠AOP=60°,
∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=90°,
∴OA⊥AP,
∴AP是⊙O的切線;
(2)連接AD
∵CD是⊙O的直徑,
∴∠CAD=90°,
∴AD=AC•tan30°=3×,
∵∠ADC=∠B=60°,
∴∠PAD=∠ADC-∠P=60°-30°=30°,
∴∠P=∠PAD,
∴PD=AD=
考點(diǎn):圓的綜合題
點(diǎn)評(píng):此類(lèi)問(wèn)題綜合性強(qiáng),難度較大,在中考中比較常見(jiàn),一般作為壓軸題,題目比較典型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)D,E,F(xiàn)分別是△ABC(AB>AC)各邊的中點(diǎn),下列說(shuō)法中,錯(cuò)誤的是( 。
A、EF與AD互相平分
B、EF=
1
2
BC
C、AD平分∠BAC
D、△DEF∽△ACB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)D,E,F(xiàn)分別是△ABC(AB>AC)各邊的中點(diǎn),下列說(shuō)法中,錯(cuò)誤的是( 。
A、AD平分∠BAC
B、EF=
1
2
BC
C、EF與AD互相平分
D、△DFE是△ABC的位似圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,點(diǎn)D、E、F分別是△ABC的邊AB、BC、AC的中點(diǎn),連接DE、EF,要使四邊形ADEF為正方形,還需增加條件:
△ABC為等腰直角三角形,且AB=AC,∠A=90°(此題答案不唯一).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)D,E,F(xiàn)分別是△ABC的三邊AB,AC,BC上的中點(diǎn),如果△ABC的面積是18cm2,則△DBF的面積是
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)D、E、F分別是△ABC三邊AB、BC、AC的中點(diǎn),則△DEF的周長(zhǎng)是△ABC周長(zhǎng)的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案