【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經(jīng)過的最短距離為_________.(π取3)

【答案】15cm

【解析】本題應(yīng)先把圓柱展開即得其平面展開圖,則A,B所在的長方形的長為圓柱的高12cm,寬為底面圓周長的一半為πr,螞蟻經(jīng)過的最短距離為連接A,B的線段長,由勾股定理求得AB的長.

解:如圖所示,

圓柱展開圖為長方形,
則A,B所在的長方形的長為圓柱的高12cm,寬為底面圓周長的一半為πrcm,
螞蟻經(jīng)過的最短距離為連接A,B的線段長,
由勾股定理得AB===15cm
故螞蟻經(jīng)過的最短距離為15cm.(π取3)

“點(diǎn)睛”解答本題的關(guān)鍵是計(jì)算出圓柱展開后所得長方形長和寬的值,然后用勾股定理計(jì)算即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,點(diǎn)A(﹣1,﹣2),B(3,﹣4),C(3,0),D(0,﹣2),E(﹣2,5),F(xiàn)(3,1),G(0,2),H(﹣3,0)中,第二象限的點(diǎn)有個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

1)請(qǐng)你根據(jù)圖中A、B兩點(diǎn)的位置,分別寫出它們所表示的有理數(shù)

A___________ B_____________ ;

2)觀察數(shù)軸,與點(diǎn)A的距離為4的點(diǎn)表示的數(shù)是:_____________ ;

3)若將數(shù)軸折疊,使得A點(diǎn)與-3表示的點(diǎn)重合,則B點(diǎn)與數(shù)_ _表示的點(diǎn)重合;

4)若數(shù)軸上M、N兩點(diǎn)之間的距離為2014MN的左側(cè)),且M、N兩點(diǎn)經(jīng)過(3)中折疊后互相重合,則M、N兩點(diǎn)表示的數(shù)分別是: M: _______ N: _______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016湖北省荊州市第24題)已知在關(guān)于x的分式方程和一元二次方程(2k)x2+3mx+(3k)n=0中,k、m、n均為實(shí)數(shù),方程的根為非負(fù)數(shù).

(1)求k的取值范圍;

(2)當(dāng)方程有兩個(gè)整數(shù)根x1、x2,k為整數(shù),且k=m+2,n=1時(shí),求方程的整數(shù)根;

(3)當(dāng)方程有兩個(gè)實(shí)數(shù)根x1、x2,滿足x1(x1k)+x2(x2k)=(x1k)(x2k),且k為負(fù)整數(shù)時(shí),試判斷|m|2是否成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)A(﹣2,1)、B(3,1)、C(2,3).請(qǐng)回答如下問題:

(1)在坐標(biāo)系內(nèi)描出點(diǎn)A、B、C的位置,并求△ABC的面積;

(2)在平面直角坐標(biāo)系中畫出△A′B′C′,使它與△ABC關(guān)于x軸對(duì)稱,并寫出△A′B′C′三頂點(diǎn)的坐標(biāo);

(3)若M(x,y)是△ABC內(nèi)部任意一點(diǎn),請(qǐng)直接寫出這點(diǎn)在△A′B′C′內(nèi)部的對(duì)應(yīng)點(diǎn)M′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二元一次方程2x+y=7的正整數(shù)解有多少組(
A.2
B.3
C.5
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】|-x|=2,則x=________;若|x-2|=0,則x=________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)Rt△的兩邊長分別為34,則第三邊長的平方是( 。

A. 25 B. 14 C. 7 D. 725

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正確結(jié)論有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

同步練習(xí)冊答案