如圖,已知?ABCD的對角線AC、BD相交于點(diǎn)O,過點(diǎn)O任作一直線分別交AD、CB的延長線于E、F,求證:OE=OF.

證明:在?ABCD中,AO=CO,AD∥BC,
∴∠E=∠F,∠EAO=∠FCO,
在△AOE和△COF中,
∴△AOE≌△COF(AAS),
∴OE=OF.
分析:根據(jù)平行四邊形的對邊平行可得AD∥BC,然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠E=∠F,∠EAO=∠FCO,又因?yàn)槠叫兴倪呅蔚膶蔷互相平分,所以,AO=CO,然后利用“角角邊”證明△AOE和△COF全等,根據(jù)全等三角形對應(yīng)邊相等即可證明.
點(diǎn)評:本題考查了平行四邊形的對邊平行,對角線互相平分的性質(zhì),以及全等三角形的判定與性質(zhì),證明兩邊相等,就證明這兩邊所在的三角形全等,是幾何證明中常用的方法,一定要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,已知?ABCD中,AB=4,BC=6,BC邊上的高AE=2,則DC邊上的高AF的長是
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、(1)探究規(guī)律:如圖,已知?ABCD,試用三種方法將它分成面積相等的兩部分;

(2)由上述方法,你能得到什么一般性的結(jié)論;
(3)解決問題:有兄弟倆分家時(shí),原來共同承包的一塊平行四邊形田地ABCD,現(xiàn)要進(jìn)行平均劃分,由于在這塊地里有一口水井P,如圖所示,為了兄弟倆都能方便使用這口井,兄弟倆在劃分時(shí)犯難了,聰明的你能幫他們解決這個(gè)問題嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,已知?ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.
(1)試說明DE=BC;
(2)試問AB與DG+FC之間有何數(shù)量關(guān)系?寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知ABCD是圓的內(nèi)接四邊形,對角線AC和BD相交于E,BC=CD=4,AE=6,如果線段BE和DE的長都是整數(shù),則BD的長等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是圓O的內(nèi)接四邊形,AB=BD,BM⊥AC于M,求證:AM=DC+CM.

查看答案和解析>>

同步練習(xí)冊答案